Files
IAEngine/Src/IAEngine/imp/cpp/Renderer.cpp
Isuru Samarathunga 0bffbbf66c Batch Renderer 1/2
2025-11-02 02:45:13 +05:30

685 lines
29 KiB
C++

// IAEngine: 2D Game Engine by IA
// Copyright (C) 2025 IASoft (PVT) LTD (oss@iasoft.dev)
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <Renderer.hpp>
#include <EmbeddedResources.hpp>
namespace ia::iae
{
STATIC CONSTEXPR INT32 MAX_SPRITE_COUNT = 100000;
#pragma pack(push, 1)
struct SpriteInstanceData
{
Mat4 Transform{1.0f};
Vec4 TexCoords{};
Vec4 Color{1.0f, 1.0f, 1.0f, 1.0f};
};
#pragma pack(pop)
struct TextureData
{
PUINT8 Pixels{};
INT32 Width{};
INT32 Height{};
INT32 TileWidth{};
INT32 TileHeight{};
INT32 TileCountX{};
INT32 TileCountY{};
SDL_GPUTexture *BakedHandle{};
};
} // namespace ia::iae
namespace ia::iae
{
IVec2 g_screenExtent{};
SDL_GPUDevice *g_gpuDevice{};
RenderPipeline *g_debugPipeline{};
RenderPipeline *g_geometryPipeline{};
SDL_GPUSampler *g_linearClampSampler{};
SDL_GPUSampler *g_linearRepeatSampler{};
Mat4 g_viewMatrix{1.0f};
Vec2 g_cameraPosition{};
Mat4 g_projectionMatrix{1.0f};
Geometry *g_quadGeometry;
Vector<TextureData> g_texureData;
Vector<SpriteInstanceData> g_staticSprites;
Vector<SpriteInstanceData> g_dynamicSprites;
SDL_GPUBuffer *g_staticSpriteDataBuffer{};
SDL_GPUBuffer *g_dynamicSpriteDataBuffer{};
SDL_GPUTransferBuffer *g_spriteDataStagingBuffer{};
SDL_GPUTexture *g_defaultTexture{};
SDL_GPUTexture *g_activeTextureAtlas{};
Map<Handle, Vec4> g_activeTextureAtlasUVMap;
EXTERN BOOL g_isDebugMode;
EXTERN Vec2 g_designViewport;
EXTERN SDL_Window *g_windowHandle;
} // namespace ia::iae
namespace ia::iae
{
VOID Renderer::Initialize(IN IVec2 screenExtent)
{
g_screenExtent = screenExtent;
InitializeGPU();
InitializeSampler();
InitializePipelines();
InitializeGeometries();
InitializeDrawData();
InitializeTextures();
}
VOID Renderer::Terminate()
{
SDL_WaitForGPUIdle(g_gpuDevice);
delete g_debugPipeline;
delete g_geometryPipeline;
if (g_defaultTexture)
DestroyTexture(g_defaultTexture);
if (g_activeTextureAtlas && (g_activeTextureAtlas != g_defaultTexture))
DestroyTexture(g_activeTextureAtlas);
DestroyBuffer(g_staticSpriteDataBuffer);
DestroyBuffer(g_dynamicSpriteDataBuffer);
SDL_ReleaseGPUTransferBuffer(g_gpuDevice, g_spriteDataStagingBuffer);
SDL_ReleaseGPUSampler(g_gpuDevice, g_linearClampSampler);
SDL_ReleaseGPUSampler(g_gpuDevice, g_linearRepeatSampler);
DestroyGeometry(g_quadGeometry);
SDL_ReleaseWindowFromGPUDevice(g_gpuDevice, g_windowHandle);
SDL_DestroyGPUDevice(g_gpuDevice);
}
VOID Renderer::Update()
{
DrawStaticSpriteTopLeft(0, 0, {10.0f, 0.0f}, {100.0f, 100.0f}, 0.0f);
DrawStaticSpriteTopLeft(0, 0, {200.0f, 300.0f}, {100.0f, 100.0f}, 0.0f);
Render();
}
VOID Renderer::Render()
{
STATIC SDL_GPURenderPass *ActiveRenderPass{};
STATIC SDL_GPUCommandBuffer *ActiveCommandBuffer{};
STATIC SDL_GPUColorTargetInfo ActiveColorTargetInfo{.clear_color = SDL_FColor{0.0f, 0.0f, 0.0f, 1.0f},
.load_op = SDL_GPU_LOADOP_CLEAR,
.store_op = SDL_GPU_STOREOP_STORE};
if (!(ActiveCommandBuffer = SDL_AcquireGPUCommandBuffer(g_gpuDevice)))
THROW_UNKNOWN("Failed to acquire SDL GPU command buffer: ", SDL_GetError());
SDL_GPUTexture *swapChainTexture{};
if (!SDL_WaitAndAcquireGPUSwapchainTexture(ActiveCommandBuffer, g_windowHandle, &swapChainTexture, nullptr,
nullptr))
THROW_UNKNOWN("Failed to acquire SDL GPU Swapchain texture: ", SDL_GetError());
if (!swapChainTexture)
return;
ActiveColorTargetInfo.texture = swapChainTexture;
ActiveColorTargetInfo.clear_color = SDL_FColor{0.3f, 0.3f, 0.3f, 1.0f};
ActiveRenderPass = SDL_BeginGPURenderPass(ActiveCommandBuffer, &ActiveColorTargetInfo, 1, nullptr);
SDL_BindGPUGraphicsPipeline(ActiveRenderPass, g_debugPipeline->GetHandle());
SDL_PushGPUVertexUniformData(ActiveCommandBuffer, 0, &g_projectionMatrix, sizeof(Mat4));
SDL_PushGPUVertexUniformData(ActiveCommandBuffer, 1, &g_viewMatrix, sizeof(Mat4));
SDL_GPUBufferBinding bufferBindings[] = {{.buffer = ((Geometry *) g_quadGeometry)->VertexBuffer, .offset = 0},
{.buffer = ((Geometry *) g_quadGeometry)->IndexBuffer, .offset = 0}};
SDL_BindGPUVertexBuffers(ActiveRenderPass, 0, &bufferBindings[0], 1);
SDL_BindGPUIndexBuffer(ActiveRenderPass, &bufferBindings[1], SDL_GPU_INDEXELEMENTSIZE_32BIT);
SDL_GPUTextureSamplerBinding textureBinding{.texture = g_activeTextureAtlas,
.sampler = GetSampler_LinearRepeat()};
SDL_BindGPUFragmentSamplers(ActiveRenderPass, 0, &textureBinding, 1);
if (g_staticSprites.size())
{
CopyToDeviceLocalBuffer(g_spriteDataStagingBuffer, g_staticSpriteDataBuffer, g_staticSprites.data(),
g_staticSprites.size() * sizeof(SpriteInstanceData));
SDL_BindGPUVertexStorageBuffers(ActiveRenderPass, 0, &g_staticSpriteDataBuffer, 1);
SDL_DrawGPUIndexedPrimitives(ActiveRenderPass, g_quadGeometry->IndexCount, g_staticSprites.size(), 0, 0, 0);
}
if (g_dynamicSprites.size())
{
CopyToDeviceLocalBuffer(g_spriteDataStagingBuffer, g_dynamicSpriteDataBuffer, g_dynamicSprites.data(),
g_dynamicSprites.size() * sizeof(SpriteInstanceData));
SDL_BindGPUVertexStorageBuffers(ActiveRenderPass, 0, &g_dynamicSpriteDataBuffer, 1);
SDL_DrawGPUIndexedPrimitives(ActiveRenderPass, g_quadGeometry->IndexCount, g_dynamicSprites.size(), 0, 0,
0);
}
g_staticSprites.resize(0);
g_dynamicSprites.resize(0);
SDL_EndGPURenderPass(ActiveRenderPass);
SDL_SubmitGPUCommandBuffer(ActiveCommandBuffer);
}
Vec2 Renderer::GetCameraPosition()
{
return g_cameraPosition;
}
VOID Renderer::SetCameraPosition(IN Vec2 position)
{
g_cameraPosition = position;
g_viewMatrix = glm::lookAtLH(glm::vec3{g_cameraPosition, -1.0f}, {g_cameraPosition, 0.0f}, {0.0f, 1.0f, 0.0f});
}
} // namespace ia::iae
namespace ia::iae
{
VOID Renderer::DrawStaticSpriteTopLeft(IN Handle texture, IN INT32 tileIndex, IN Vec2 position, IN Vec2 scale,
IN FLOAT32 rotation)
{
Mat4 transform = glm::translate(glm::mat4(1.0f), glm::vec3{position.x, position.y, 0});
transform = glm::rotate(transform, rotation, glm::vec3(0.0f, 0.0f, 1.0f));
transform = glm::scale(transform, glm::vec3{scale.x, scale.y, 1.0f});
g_staticSprites.pushBack({.Transform = transform,
.TexCoords = GetTextureAtlasCoordinates(texture, tileIndex),
.Color = {1.0f, 1.0f, 1.0f, 1.0f}});
}
VOID Renderer::DrawDynamicSpriteTopLeft(IN Handle texture, IN INT32 tileIndex, IN Vec2 position, IN Vec2 scale,
IN FLOAT32 rotation)
{
Mat4 transform = glm::translate(glm::mat4(1.0f), glm::vec3{position.x, position.y, 0});
transform = glm::rotate(transform, rotation, glm::vec3(0.0f, 0.0f, 1.0f));
transform = glm::scale(transform, glm::vec3{scale.x, scale.y, 1.0f});
g_dynamicSprites.pushBack({.Transform = transform,
.TexCoords = GetTextureAtlasCoordinates(texture, tileIndex),
.Color = {1.0f, 1.0f, 1.0f, 1.0f}});
}
Geometry *Renderer::CreateGeometry(IN CONST Vector<GeometryVertex> &vertices, IN CONST Vector<INT32> &indices)
{
const auto mesh = new Geometry();
mesh->VertexBuffer = CreateDeviceLocalBuffer(SDL_GPU_BUFFERUSAGE_VERTEX, vertices.data(),
static_cast<UINT32>(vertices.size() * sizeof(vertices[0])));
mesh->IndexBuffer = CreateDeviceLocalBuffer(SDL_GPU_BUFFERUSAGE_INDEX, indices.data(),
static_cast<UINT32>(indices.size() * sizeof(indices[0])));
mesh->IndexCount = static_cast<UINT32>(indices.size());
return mesh;
}
VOID Renderer::DestroyGeometry(IN Geometry *geometry)
{
DestroyBuffer(geometry->VertexBuffer);
DestroyBuffer(geometry->IndexBuffer);
delete geometry;
}
} // namespace ia::iae
namespace ia::iae
{
Handle Renderer::CreateTexture(IN PCUINT8 rgbaData, IN INT32 width, IN INT32 height, IN INT32 tileCountX,
IN INT32 tileCountY)
{
const auto pixelDataSize = width * height * 4;
g_texureData.pushBack({.Pixels = new UINT8[pixelDataSize],
.Width = width,
.Height = height,
.TileWidth = width / tileCountX,
.TileHeight = height / tileCountY,
.TileCountX = tileCountX,
.TileCountY = tileCountY,
.BakedHandle = nullptr});
ia_memcpy(g_texureData.back().Pixels, rgbaData, pixelDataSize);
return g_texureData.size() - 1;
}
VOID Renderer::DestroyTexture(IN Handle texture)
{
auto &t = g_texureData[texture];
if (t.Pixels)
delete[] t.Pixels;
if (t.BakedHandle)
DestroyTexture(t.BakedHandle);
t.Pixels = nullptr;
t.BakedHandle = nullptr;
}
VOID Renderer::BakeTexture(IN Handle texture)
{
auto &t = g_texureData[texture];
t.BakedHandle = CreateTexture(SDL_GPU_TEXTUREUSAGE_SAMPLER | SDL_GPU_TEXTUREUSAGE_COLOR_TARGET, t.Width,
t.Height, t.Width, t.Pixels);
}
VOID Renderer::SetTextureAtlas(IN CONST Vector<Handle> textures)
{
g_activeTextureAtlasUVMap = Map<Handle, Vec4>();
if (g_activeTextureAtlas)
DestroyTexture(g_activeTextureAtlas);
INT32 atlasWidth{0}, atlasHeight{0};
for (const auto &t : textures)
{
const auto &d = g_texureData[t];
atlasWidth += d.Width;
if (d.Height > atlasHeight)
atlasHeight = d.Height;
}
const auto pixels = new UINT8[atlasWidth * atlasHeight * 4];
INT32 atlasCursor{0};
for (const auto &t : textures)
{
const auto &d = g_texureData[t];
for (INT32 y = 0; y < d.Height; y++)
ia_memcpy(&pixels[atlasCursor + (y * atlasWidth)], d.Pixels, d.Width * 4);
g_activeTextureAtlasUVMap[t] =
Vec4(((FLOAT32) atlasCursor) / ((FLOAT32) atlasWidth), 0.0f,
((FLOAT32) d.Width) / ((FLOAT32) atlasWidth), ((FLOAT32) d.Height) / ((FLOAT32) atlasHeight));
atlasCursor += d.Width;
}
g_activeTextureAtlas = CreateTexture(SDL_GPU_TEXTUREUSAGE_SAMPLER | SDL_GPU_TEXTUREUSAGE_COLOR_TARGET,
atlasWidth, atlasHeight, atlasWidth, pixels);
delete[] pixels;
}
Vec4 Renderer::GetTextureAtlasCoordinates(IN Handle texture, IN INT32 tileIndex)
{
const auto &d = g_texureData[texture];
const auto &t = g_activeTextureAtlasUVMap[texture];
return t;
}
} // namespace ia::iae
namespace ia::iae
{
SDL_GPUTexture *Renderer::CreateTexture(IN SDL_GPUTextureUsageFlags usage, IN INT32 width, IN INT32 height,
IN INT32 stride, IN PCUINT8 rgbaData, IN SDL_GPUTextureFormat format,
IN BOOL generateMipmaps)
{
const auto mipLevels =
generateMipmaps ? ia_max((UINT32) (floor(log2(ia_max(width, height))) + 1), (UINT32) 1) : (UINT32) 1;
STATIC Vector<UINT8> TMP_COLOR_BUFFER;
SDL_GPUTextureCreateInfo createInfo{.type = SDL_GPU_TEXTURETYPE_2D,
.format = format,
.usage = usage,
.width = (UINT32) width,
.height = (UINT32) height,
.layer_count_or_depth = 1,
.num_levels = (UINT32) mipLevels,
.sample_count = SDL_GPU_SAMPLECOUNT_1};
const auto result = SDL_CreateGPUTexture(g_gpuDevice, &createInfo);
if (!result)
{
THROW_UNKNOWN("Failed to create a SDL GPU Texture: ", SDL_GetError());
return nullptr;
}
if (rgbaData)
{
TMP_COLOR_BUFFER.resize(width * height * 4);
if (stride == width)
{
for (SIZE_T i = 0; i < TMP_COLOR_BUFFER.size() >> 2; i++)
{
const auto a = static_cast<FLOAT32>(rgbaData[i * 4 + 3]) / 255.0f;
TMP_COLOR_BUFFER[i * 4 + 0] = static_cast<UINT8>(rgbaData[i * 4 + 0] * a);
TMP_COLOR_BUFFER[i * 4 + 1] = static_cast<UINT8>(rgbaData[i * 4 + 1] * a);
TMP_COLOR_BUFFER[i * 4 + 2] = static_cast<UINT8>(rgbaData[i * 4 + 2] * a);
TMP_COLOR_BUFFER[i * 4 + 3] = rgbaData[i * 4 + 3];
}
}
else
{
for (INT32 y = 0; y < height; y++)
{
for (INT32 x = 0; x < width; x++)
{
const auto p = &rgbaData[(x + y * stride) * 4];
const auto a = static_cast<FLOAT32>(p[3]) / 255.0f;
TMP_COLOR_BUFFER[(x + y * width) * 4 + 0] = static_cast<UINT8>(p[0] * a);
TMP_COLOR_BUFFER[(x + y * width) * 4 + 1] = static_cast<UINT8>(p[1] * a);
TMP_COLOR_BUFFER[(x + y * width) * 4 + 2] = static_cast<UINT8>(p[2] * a);
TMP_COLOR_BUFFER[(x + y * width) * 4 + 3] = p[3];
}
}
}
SDL_GPUTransferBufferCreateInfo stagingBufferCreateInfo{.usage = SDL_GPU_TRANSFERBUFFERUSAGE_UPLOAD,
.size = (UINT32) width * (UINT32) height * 4};
const auto stagingBuffer = SDL_CreateGPUTransferBuffer(g_gpuDevice, &stagingBufferCreateInfo);
const auto mappedPtr = SDL_MapGPUTransferBuffer(g_gpuDevice, stagingBuffer, false);
SDL_memcpy(mappedPtr, TMP_COLOR_BUFFER.data(), width * height * 4);
SDL_UnmapGPUTransferBuffer(g_gpuDevice, stagingBuffer);
auto cmdBuffer = SDL_AcquireGPUCommandBuffer(g_gpuDevice);
const auto copyPass = SDL_BeginGPUCopyPass(cmdBuffer);
SDL_GPUTextureTransferInfo transferInfo{.transfer_buffer = stagingBuffer, .offset = 0};
SDL_GPUTextureRegion region{.texture = result, .w = (UINT32) width, .h = (UINT32) height, .d = 1};
SDL_UploadToGPUTexture(copyPass, &transferInfo, &region, false);
SDL_EndGPUCopyPass(copyPass);
SDL_SubmitGPUCommandBuffer(cmdBuffer);
SDL_WaitForGPUIdle(g_gpuDevice);
SDL_ReleaseGPUTransferBuffer(g_gpuDevice, stagingBuffer);
if (mipLevels > 1)
{
cmdBuffer = SDL_AcquireGPUCommandBuffer(g_gpuDevice);
SDL_GenerateMipmapsForGPUTexture(cmdBuffer, result);
SDL_SubmitGPUCommandBuffer(cmdBuffer);
SDL_WaitForGPUIdle(g_gpuDevice);
}
}
return result;
}
SDL_GPUBuffer *Renderer::CreateDeviceLocalBuffer(IN SDL_GPUBufferUsageFlags usage, IN PCVOID data,
IN UINT32 dataSize)
{
SDL_GPUBufferCreateInfo createInfo{.usage = usage, .size = dataSize};
const auto result = SDL_CreateGPUBuffer(g_gpuDevice, &createInfo);
if (!result)
{
THROW_UNKNOWN("Failed to create a SDL GPU Buffer: ", SDL_GetError());
return nullptr;
}
if (data && dataSize)
CopyToDeviceLocalBuffer(result, data, dataSize);
return result;
}
VOID Renderer::CopyToDeviceLocalBuffer(IN SDL_GPUBuffer *buffer, IN PCVOID data, IN UINT32 dataSize)
{
SDL_GPUTransferBufferCreateInfo stagingBufferCreateInfo{.usage = SDL_GPU_TRANSFERBUFFERUSAGE_UPLOAD,
.size = dataSize};
const auto stagingBuffer = SDL_CreateGPUTransferBuffer(g_gpuDevice, &stagingBufferCreateInfo);
CopyToDeviceLocalBuffer(stagingBuffer, buffer, data, dataSize);
SDL_ReleaseGPUTransferBuffer(g_gpuDevice, stagingBuffer);
}
VOID Renderer::CopyToDeviceLocalBuffer(IN SDL_GPUTransferBuffer *stagingBuffer, IN SDL_GPUBuffer *buffer,
IN PCVOID data, IN UINT32 dataSize)
{
const auto mappedPtr = SDL_MapGPUTransferBuffer(g_gpuDevice, stagingBuffer, false);
SDL_memcpy(mappedPtr, data, dataSize);
SDL_UnmapGPUTransferBuffer(g_gpuDevice, stagingBuffer);
const auto cmdBuffer = SDL_AcquireGPUCommandBuffer(g_gpuDevice);
const auto copyPass = SDL_BeginGPUCopyPass(cmdBuffer);
SDL_GPUTransferBufferLocation src{.transfer_buffer = stagingBuffer, .offset = 0};
SDL_GPUBufferRegion dst{.buffer = buffer, .offset = 0, .size = dataSize};
SDL_UploadToGPUBuffer(copyPass, &src, &dst, false);
SDL_EndGPUCopyPass(copyPass);
SDL_SubmitGPUCommandBuffer(cmdBuffer);
SDL_WaitForGPUIdle(g_gpuDevice);
}
VOID Renderer::DestroyTexture(IN SDL_GPUTexture *handle)
{
if (!handle)
return;
SDL_ReleaseGPUTexture(g_gpuDevice, handle);
}
VOID Renderer::DestroyBuffer(IN SDL_GPUBuffer *handle)
{
if (!handle)
return;
SDL_ReleaseGPUBuffer(g_gpuDevice, handle);
}
SDL_GPUSampler *Renderer::GetSampler_LinearClamp()
{
return g_linearClampSampler;
}
SDL_GPUSampler *Renderer::GetSampler_LinearRepeat()
{
return g_linearRepeatSampler;
}
} // namespace ia::iae
namespace ia::iae
{
VOID Renderer::InitializePipelines()
{
g_debugPipeline = new RenderPipeline(
RenderPipeline::StageDesc{
.SourceData = EmbeddedResources::GetResource("Shaders/Debug.vert"),
.SamplerCount = 0,
.UniformBufferCount = 2,
.StorageBufferCount = 1,
},
RenderPipeline::StageDesc{
.SourceData = EmbeddedResources::GetResource("Shaders/Debug.frag"),
.SamplerCount = 1,
.UniformBufferCount = 0,
.StorageBufferCount = 0,
},
true);
g_geometryPipeline = new RenderPipeline(
RenderPipeline::StageDesc{
.SourceData = EmbeddedResources::GetResource("Shaders/Geometry.vert"),
.SamplerCount = 0,
.UniformBufferCount = 3,
.StorageBufferCount = 0,
},
RenderPipeline::StageDesc{
.SourceData = EmbeddedResources::GetResource("Shaders/Geometry.frag"),
.SamplerCount = 1,
.UniformBufferCount = 1,
.StorageBufferCount = 0,
},
true);
}
RenderPipeline::RenderPipeline(IN CONST StageDesc &vertexStageDesc, IN CONST StageDesc &pixelStageDesc,
IN BOOL enableVertexBuffer)
{
SDL_GPUShader *vertexShader{};
SDL_GPUShader *pixelShader{};
SDL_GPUShaderCreateInfo shaderCreateInfo = {
.entrypoint = "main",
.format = SDL_GPU_SHADERFORMAT_SPIRV,
.num_storage_textures = 0,
.num_storage_buffers = 0,
};
shaderCreateInfo.stage = SDL_GPU_SHADERSTAGE_VERTEX;
shaderCreateInfo.code = vertexStageDesc.SourceData.data();
shaderCreateInfo.code_size = vertexStageDesc.SourceData.size();
shaderCreateInfo.num_samplers = vertexStageDesc.SamplerCount;
shaderCreateInfo.num_uniform_buffers = vertexStageDesc.UniformBufferCount;
shaderCreateInfo.num_storage_buffers = vertexStageDesc.StorageBufferCount;
if (!(vertexShader = SDL_CreateGPUShader(g_gpuDevice, &shaderCreateInfo)))
THROW_UNKNOWN("Failed to create a SDL shader: ", SDL_GetError());
shaderCreateInfo.stage = SDL_GPU_SHADERSTAGE_FRAGMENT;
shaderCreateInfo.code = pixelStageDesc.SourceData.data();
shaderCreateInfo.code_size = pixelStageDesc.SourceData.size();
shaderCreateInfo.num_samplers = pixelStageDesc.SamplerCount;
shaderCreateInfo.num_uniform_buffers = pixelStageDesc.UniformBufferCount;
shaderCreateInfo.num_storage_buffers = pixelStageDesc.StorageBufferCount;
if (!(pixelShader = SDL_CreateGPUShader(g_gpuDevice, &shaderCreateInfo)))
THROW_UNKNOWN("Failed to create a SDL shader: ", SDL_GetError());
SDL_GPUColorTargetDescription colorTargetDesc = {
.format = SDL_GetGPUSwapchainTextureFormat(g_gpuDevice, g_windowHandle),
.blend_state = {.src_color_blendfactor = SDL_GPU_BLENDFACTOR_ONE,
.dst_color_blendfactor = SDL_GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA,
.color_blend_op = SDL_GPU_BLENDOP_ADD,
.src_alpha_blendfactor = SDL_GPU_BLENDFACTOR_ONE,
.dst_alpha_blendfactor = SDL_GPU_BLENDFACTOR_ONE_MINUS_SRC_ALPHA,
.alpha_blend_op = SDL_GPU_BLENDOP_ADD,
.enable_blend = true,
.enable_color_write_mask = false}};
SDL_GPUVertexBufferDescription vertexBufferDesc = {
.slot = 0,
.pitch = sizeof(GeometryVertex),
.input_rate = SDL_GPU_VERTEXINPUTRATE_VERTEX,
.instance_step_rate = 0,
};
SDL_GPUVertexAttribute vertexAttributes[] = {
{.location = 0, .buffer_slot = 0, .format = SDL_GPU_VERTEXELEMENTFORMAT_FLOAT2, .offset = 0},
{.location = 1, .buffer_slot = 0, .format = SDL_GPU_VERTEXELEMENTFORMAT_FLOAT2, .offset = sizeof(Vec2)}};
SDL_GPUGraphicsPipelineCreateInfo createInfo = {
.vertex_shader = vertexShader,
.fragment_shader = pixelShader,
.vertex_input_state = SDL_GPUVertexInputState{.vertex_buffer_descriptions = &vertexBufferDesc,
.num_vertex_buffers = enableVertexBuffer ? (UINT32) 1 : 0,
.vertex_attributes = vertexAttributes,
.num_vertex_attributes = enableVertexBuffer ? (UINT32) 2 : 0},
.primitive_type = SDL_GPU_PRIMITIVETYPE_TRIANGLELIST,
.rasterizer_state = SDL_GPURasterizerState{.fill_mode = SDL_GPU_FILLMODE_FILL,
.cull_mode = SDL_GPU_CULLMODE_NONE,
.front_face = SDL_GPU_FRONTFACE_COUNTER_CLOCKWISE,
.enable_depth_clip = true},
.target_info = {.color_target_descriptions = &colorTargetDesc,
.num_color_targets = 1,
.has_depth_stencil_target = false},
};
if (!(m_handle = SDL_CreateGPUGraphicsPipeline(g_gpuDevice, &createInfo)))
THROW_UNKNOWN("Failed to create a SDL graphics pipeline: ", SDL_GetError());
SDL_ReleaseGPUShader(g_gpuDevice, pixelShader);
SDL_ReleaseGPUShader(g_gpuDevice, vertexShader);
}
RenderPipeline::~RenderPipeline()
{
SDL_ReleaseGPUGraphicsPipeline(g_gpuDevice, m_handle);
}
} // namespace ia::iae
namespace ia::iae
{
VOID Renderer::InitializeGPU()
{
SDL_PropertiesID deviceCreateProps = SDL_CreateProperties();
SDL_SetStringProperty(deviceCreateProps, SDL_PROP_GPU_DEVICE_CREATE_NAME_STRING, nullptr);
SDL_SetBooleanProperty(deviceCreateProps, SDL_PROP_GPU_DEVICE_CREATE_SHADERS_SPIRV_BOOLEAN, true);
SDL_SetBooleanProperty(deviceCreateProps, SDL_PROP_GPU_DEVICE_CREATE_DEBUGMODE_BOOLEAN, g_isDebugMode);
SDL_SetBooleanProperty(deviceCreateProps, SDL_PROP_GPU_DEVICE_CREATE_FEATURE_DEPTH_CLAMPING_BOOLEAN, false);
if (!(g_gpuDevice = SDL_CreateGPUDeviceWithProperties(deviceCreateProps)))
THROW_UNKNOWN("Failed to create the SDL GPU Device: ", SDL_GetError());
SDL_DestroyProperties(deviceCreateProps);
if (!SDL_ClaimWindowForGPUDevice(g_gpuDevice, g_windowHandle))
THROW_UNKNOWN("Failed to initialize SDL GPU for the window: ", SDL_GetError());
SDL_SetGPUSwapchainParameters(g_gpuDevice, g_windowHandle, SDL_GPU_SWAPCHAINCOMPOSITION_SDR,
SDL_GPU_PRESENTMODE_VSYNC);
}
VOID Renderer::InitializeSampler()
{
SDL_GPUSamplerCreateInfo createInfo{.min_filter = SDL_GPU_FILTER_NEAREST,
.mag_filter = SDL_GPU_FILTER_NEAREST,
.mipmap_mode = SDL_GPU_SAMPLERMIPMAPMODE_LINEAR,
.address_mode_u = SDL_GPU_SAMPLERADDRESSMODE_CLAMP_TO_EDGE,
.address_mode_v = SDL_GPU_SAMPLERADDRESSMODE_CLAMP_TO_EDGE,
.address_mode_w = SDL_GPU_SAMPLERADDRESSMODE_CLAMP_TO_EDGE,
.enable_anisotropy = false};
g_linearClampSampler = SDL_CreateGPUSampler(g_gpuDevice, &createInfo);
createInfo.min_filter = SDL_GPU_FILTER_NEAREST;
createInfo.mag_filter = SDL_GPU_FILTER_NEAREST;
createInfo.mipmap_mode = SDL_GPU_SAMPLERMIPMAPMODE_LINEAR;
createInfo.address_mode_u = SDL_GPU_SAMPLERADDRESSMODE_REPEAT,
createInfo.address_mode_v = SDL_GPU_SAMPLERADDRESSMODE_REPEAT,
createInfo.address_mode_w = SDL_GPU_SAMPLERADDRESSMODE_REPEAT,
g_linearRepeatSampler = SDL_CreateGPUSampler(g_gpuDevice, &createInfo);
}
VOID Renderer::InitializeGeometries()
{
g_quadGeometry = Renderer::CreateGeometry(
{
{glm::vec2{0, 1}, glm::vec2{0, 1}},
{glm::vec2{1, 1}, glm::vec2{1, 1}},
{glm::vec2{1, 0}, glm::vec2{1, 0}},
{glm::vec2{0, 0}, glm::vec2{0, 0}},
},
{0, 1, 2, 2, 3, 0});
}
VOID Renderer::InitializeDrawData()
{
g_staticSpriteDataBuffer = CreateDeviceLocalBuffer(SDL_GPU_BUFFERUSAGE_GRAPHICS_STORAGE_READ, nullptr,
sizeof(SpriteInstanceData) * MAX_SPRITE_COUNT);
g_dynamicSpriteDataBuffer = CreateDeviceLocalBuffer(SDL_GPU_BUFFERUSAGE_GRAPHICS_STORAGE_READ, nullptr,
sizeof(SpriteInstanceData) * MAX_SPRITE_COUNT);
SDL_GPUTransferBufferCreateInfo stagingBufferCreateInfo{.usage = SDL_GPU_TRANSFERBUFFERUSAGE_UPLOAD,
.size = sizeof(SpriteInstanceData) * MAX_SPRITE_COUNT};
g_spriteDataStagingBuffer = SDL_CreateGPUTransferBuffer(g_gpuDevice, &stagingBufferCreateInfo);
g_projectionMatrix =
glm::orthoLH(0.0f, (FLOAT32) g_screenExtent.x, (FLOAT32) g_screenExtent.y, 0.0f, -1.0f, 1.0f);
SetCameraPosition({});
}
VOID Renderer::InitializeTextures()
{
{ // Create Default Texture
const auto pixels = new UINT8[100 * 100 * 4];
ia_memset(pixels, 0xFF, 100 * 100 * 4);
const auto t = CreateTexture(pixels, 100, 100);
BakeTexture(t);
g_defaultTexture = g_texureData[t].BakedHandle;
delete[] pixels;
}
g_activeTextureAtlas = g_defaultTexture;
}
} // namespace ia::iae