This commit is contained in:
2025-11-28 23:13:44 +05:30
commit a3a8e79709
7360 changed files with 1156074 additions and 0 deletions

View File

@ -0,0 +1,394 @@
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
// ****************************************************************************
// This snippet demonstrates the possibilities of triangle mesh creation.
//
// The snippet creates triangle mesh with a different cooking settings
// and shows how these settings affect the triangle mesh creation speed.
// ****************************************************************************
#include <ctype.h>
#include "PxPhysicsAPI.h"
#include "../snippetutils/SnippetUtils.h"
using namespace physx;
PxDefaultAllocator gAllocator;
PxDefaultErrorCallback gErrorCallback;
PxFoundation* gFoundation = NULL;
PxPhysics* gPhysics = NULL;
PxCooking* gCooking = NULL;
float rand(float loVal, float hiVal)
{
return loVal + float(rand()/float(RAND_MAX))*(hiVal - loVal);
}
PxU32 rand(PxU32 loVal, PxU32 hiVal)
{
return loVal + PxU32(rand()%(hiVal - loVal));
}
void indexToCoord(PxU32& x, PxU32& z, PxU32 index, PxU32 w)
{
x = index % w;
z = index / w;
}
// Creates a random terrain data.
void createRandomTerrain(const PxVec3& origin, PxU32 numRows, PxU32 numColumns,
PxReal cellSizeRow, PxReal cellSizeCol, PxReal heightScale,
PxVec3*& vertices, PxU32*& indices)
{
PxU32 numX = (numColumns + 1);
PxU32 numZ = (numRows + 1);
PxU32 numVertices = numX*numZ;
PxU32 numTriangles = numRows*numColumns * 2;
if (vertices == NULL)
vertices = new PxVec3[numVertices];
if (indices == NULL)
indices = new PxU32[numTriangles * 3];
PxU32 currentIdx = 0;
for (PxU32 i = 0; i <= numRows; i++)
{
for (PxU32 j = 0; j <= numColumns; j++)
{
PxVec3 v(origin.x + PxReal(j)*cellSizeRow, origin.y, origin.z + PxReal(i)*cellSizeCol);
vertices[currentIdx++] = v;
}
}
currentIdx = 0;
for (PxU32 i = 0; i < numRows; i++)
{
for (PxU32 j = 0; j < numColumns; j++)
{
PxU32 base = (numColumns + 1)*i + j;
indices[currentIdx++] = base + 1;
indices[currentIdx++] = base;
indices[currentIdx++] = base + numColumns + 1;
indices[currentIdx++] = base + numColumns + 2;
indices[currentIdx++] = base + 1;
indices[currentIdx++] = base + numColumns + 1;
}
}
for (PxU32 i = 0; i < numVertices; i++)
{
PxVec3& v = vertices[i];
v.y += heightScale * rand(-1.0f, 1.0f);
}
}
// Setup common cooking params
void setupCommonCookingParams(PxCookingParams& params, bool skipMeshCleanup, bool skipEdgeData)
{
// we suppress the triangle mesh remap table computation to gain some speed, as we will not need it
// in this snippet
params.suppressTriangleMeshRemapTable = true;
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking. The input mesh must be valid.
// The following conditions are true for a valid triangle mesh :
// 1. There are no duplicate vertices(within specified vertexWeldTolerance.See PxCookingParams::meshWeldTolerance)
// 2. There are no large triangles(within specified PxTolerancesScale.)
// It is recommended to run a separate validation check in debug/checked builds, see below.
if (!skipMeshCleanup)
params.meshPreprocessParams &= ~static_cast<PxMeshPreprocessingFlags>(PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH);
else
params.meshPreprocessParams |= PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH;
// If DISABLE_ACTIVE_EDGES_PREDOCOMPUTE is set, the cooking does not compute the active (convex) edges, and instead
// marks all edges as active. This makes cooking faster but can slow down contact generation. This flag may change
// the collision behavior, as all edges of the triangle mesh will now be considered active.
if (!skipEdgeData)
params.meshPreprocessParams &= ~static_cast<PxMeshPreprocessingFlags>(PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE);
else
params.meshPreprocessParams |= PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE;
}
// Creates a triangle mesh using BVH33 midphase with different settings.
void createBV33TriangleMesh(PxU32 numVertices, const PxVec3* vertices, PxU32 numTriangles, const PxU32* indices,
bool skipMeshCleanup, bool skipEdgeData, bool inserted, bool cookingPerformance, bool meshSizePerfTradeoff)
{
PxU64 startTime = SnippetUtils::getCurrentTimeCounterValue();
PxTriangleMeshDesc meshDesc;
meshDesc.points.count = numVertices;
meshDesc.points.data = vertices;
meshDesc.points.stride = sizeof(PxVec3);
meshDesc.triangles.count = numTriangles;
meshDesc.triangles.data = indices;
meshDesc.triangles.stride = 3 * sizeof(PxU32);
PxCookingParams params = gCooking->getParams();
// Create BVH33 midphase
params.midphaseDesc = PxMeshMidPhase::eBVH33;
// setup common cooking params
setupCommonCookingParams(params, skipMeshCleanup, skipEdgeData);
// The COOKING_PERFORMANCE flag for BVH33 midphase enables a fast cooking path at the expense of somewhat lower quality BVH construction.
if (cookingPerformance)
params.midphaseDesc.mBVH33Desc.meshCookingHint = PxMeshCookingHint::eCOOKING_PERFORMANCE;
else
params.midphaseDesc.mBVH33Desc.meshCookingHint = PxMeshCookingHint::eSIM_PERFORMANCE;
// If meshSizePerfTradeoff is set to true, smaller mesh cooked mesh is produced. The mesh size/performance trade-off
// is controlled by setting the meshSizePerformanceTradeOff from 0.0f (smaller mesh) to 1.0f (larger mesh).
if(meshSizePerfTradeoff)
{
params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff = 0.0f;
}
else
{
// using the default value
params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff = 0.55f;
}
gCooking->setParams(params);
#if defined(PX_CHECKED) || defined(PX_DEBUG)
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking.
// We should check the validity of provided triangles in debug/checked builds though.
if (skipMeshCleanup)
{
PX_ASSERT(gCooking->validateTriangleMesh(meshDesc));
}
#endif // DEBUG
PxTriangleMesh* triMesh = NULL;
PxU32 meshSize = 0;
// The cooked mesh may either be saved to a stream for later loading, or inserted directly into PxPhysics.
if (inserted)
{
triMesh = gCooking->createTriangleMesh(meshDesc, gPhysics->getPhysicsInsertionCallback());
}
else
{
PxDefaultMemoryOutputStream outBuffer;
gCooking->cookTriangleMesh(meshDesc, outBuffer);
PxDefaultMemoryInputData stream(outBuffer.getData(), outBuffer.getSize());
triMesh = gPhysics->createTriangleMesh(stream);
meshSize = outBuffer.getSize();
}
// Print the elapsed time for comparison
PxU64 stopTime = SnippetUtils::getCurrentTimeCounterValue();
float elapsedTime = SnippetUtils::getElapsedTimeInMilliseconds(stopTime - startTime);
printf("\t -----------------------------------------------\n");
printf("\t Create triangle mesh with %d triangles: \n",numTriangles);
cookingPerformance ? printf("\t\t Cooking performance on\n") : printf("\t\t Cooking performance off\n");
inserted ? printf("\t\t Mesh inserted on\n") : printf("\t\t Mesh inserted off\n");
!skipEdgeData ? printf("\t\t Precompute edge data on\n") : printf("\t\t Precompute edge data off\n");
!skipMeshCleanup ? printf("\t\t Mesh cleanup on\n") : printf("\t\t Mesh cleanup off\n");
printf("\t\t Mesh size/performance trade-off: %f \n", double(params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff));
printf("\t Elapsed time in ms: %f \n", double(elapsedTime));
if(!inserted)
{
printf("\t Mesh size: %d \n", meshSize);
}
triMesh->release();
}
// Creates a triangle mesh using BVH34 midphase with different settings.
void createBV34TriangleMesh(PxU32 numVertices, const PxVec3* vertices, PxU32 numTriangles, const PxU32* indices,
bool skipMeshCleanup, bool skipEdgeData, bool inserted, const PxU32 numTrisPerLeaf)
{
PxU64 startTime = SnippetUtils::getCurrentTimeCounterValue();
PxTriangleMeshDesc meshDesc;
meshDesc.points.count = numVertices;
meshDesc.points.data = vertices;
meshDesc.points.stride = sizeof(PxVec3);
meshDesc.triangles.count = numTriangles;
meshDesc.triangles.data = indices;
meshDesc.triangles.stride = 3 * sizeof(PxU32);
PxCookingParams params = gCooking->getParams();
// Create BVH34 midphase
params.midphaseDesc = PxMeshMidPhase::eBVH34;
// setup common cooking params
setupCommonCookingParams(params, skipMeshCleanup, skipEdgeData);
// Cooking mesh with less triangles per leaf produces larger meshes with better runtime performance
// and worse cooking performance. Cooking time is better when more triangles per leaf are used.
params.midphaseDesc.mBVH34Desc.numPrimsPerLeaf = numTrisPerLeaf;
gCooking->setParams(params);
#if defined(PX_CHECKED) || defined(PX_DEBUG)
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking.
// We should check the validity of provided triangles in debug/checked builds though.
if (skipMeshCleanup)
{
PX_ASSERT(gCooking->validateTriangleMesh(meshDesc));
}
#endif // DEBUG
PxTriangleMesh* triMesh = NULL;
PxU32 meshSize = 0;
// The cooked mesh may either be saved to a stream for later loading, or inserted directly into PxPhysics.
if (inserted)
{
triMesh = gCooking->createTriangleMesh(meshDesc, gPhysics->getPhysicsInsertionCallback());
}
else
{
PxDefaultMemoryOutputStream outBuffer;
gCooking->cookTriangleMesh(meshDesc, outBuffer);
PxDefaultMemoryInputData stream(outBuffer.getData(), outBuffer.getSize());
triMesh = gPhysics->createTriangleMesh(stream);
meshSize = outBuffer.getSize();
}
// Print the elapsed time for comparison
PxU64 stopTime = SnippetUtils::getCurrentTimeCounterValue();
float elapsedTime = SnippetUtils::getElapsedTimeInMilliseconds(stopTime - startTime);
printf("\t -----------------------------------------------\n");
printf("\t Create triangle mesh with %d triangles: \n", numTriangles);
inserted ? printf("\t\t Mesh inserted on\n") : printf("\t\t Mesh inserted off\n");
!skipEdgeData ? printf("\t\t Precompute edge data on\n") : printf("\t\t Precompute edge data off\n");
!skipMeshCleanup ? printf("\t\t Mesh cleanup on\n") : printf("\t\t Mesh cleanup off\n");
printf("\t\t Num triangles per leaf: %d \n", numTrisPerLeaf);
printf("\t Elapsed time in ms: %f \n", double(elapsedTime));
if (!inserted)
{
printf("\t Mesh size: %d \n", meshSize);
}
triMesh->release();
}
void createTriangleMeshes()
{
const PxU32 numColumns = 128;
const PxU32 numRows = 128;
const PxU32 numVertices = (numColumns + 1)*(numRows + 1);
const PxU32 numTriangles = numColumns*numRows * 2;
PxVec3* vertices = new PxVec3[numVertices];
PxU32* indices = new PxU32[numTriangles * 3];
srand(50);
createRandomTerrain(PxVec3(0.0f, 0.0f, 0.0f), numRows, numColumns, 1.0f, 1.0f, 1.f, vertices, indices);
// Create triangle mesh using BVH33 midphase with different settings
printf("-----------------------------------------------\n");
printf("Create triangles mesh using BVH33 midphase: \n\n");
// Favor runtime speed, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
// These are the default settings, suitable for offline cooking.
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, false, false, false, false, false);
// Favor mesh size, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
createBV33TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, false, true);
// Favor cooking speed, skip mesh cleanup, but precompute active edges. Insert into PxPhysics.
// These settings are suitable for runtime cooking, although selecting fast cooking may reduce
// runtime performance of simulation and queries. We still need to ensure the triangles
// are valid, so we perform a validation check in debug/checked builds.
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, true, false, true, true, false);
// Favor cooking speed, skip mesh cleanup, and don't precompute the active edges. Insert into PxPhysics.
// This is the fastest possible solution for runtime cooking, but all edges are marked as active, which can
// further reduce runtime performance, and also affect behavior.
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, false, true, true, true, false);
// Create triangle mesh using BVH34 midphase with different settings
printf("-----------------------------------------------\n");
printf("Create triangles mesh using BVH34 midphase: \n\n");
// Favor runtime speed, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
// These are the default settings, suitable for offline cooking.
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, 4);
// Favor mesh size, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, 15);
// Favor cooking speed, skip mesh cleanup, but precompute active edges. Insert into PxPhysics.
// These settings are suitable for runtime cooking, although selecting more triangles per leaf may reduce
// runtime performance of simulation and queries. We still need to ensure the triangles
// are valid, so we perform a validation check in debug/checked builds.
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, true, false, true, 15);
// Favor cooking speed, skip mesh cleanup, and don't precompute the active edges. Insert into PxPhysics.
// This is the fastest possible solution for runtime cooking, but all edges are marked as active, which can
// further reduce runtime performance, and also affect behavior.
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, true, true, 15);
delete [] vertices;
delete [] indices;
}
void initPhysics()
{
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback);
gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(),true);
gCooking = PxCreateCooking(PX_PHYSICS_VERSION, *gFoundation, PxCookingParams(PxTolerancesScale()));
createTriangleMeshes();
}
void cleanupPhysics()
{
gPhysics->release();
gCooking->release();
gFoundation->release();
printf("SnippetTriangleMeshCreate done.\n");
}
int snippetMain(int, const char*const*)
{
initPhysics();
cleanupPhysics();
return 0;
}