Init
This commit is contained in:
@ -0,0 +1,394 @@
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
|
||||
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
|
||||
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
|
||||
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
|
||||
|
||||
// ****************************************************************************
|
||||
// This snippet demonstrates the possibilities of triangle mesh creation.
|
||||
//
|
||||
// The snippet creates triangle mesh with a different cooking settings
|
||||
// and shows how these settings affect the triangle mesh creation speed.
|
||||
// ****************************************************************************
|
||||
|
||||
#include <ctype.h>
|
||||
|
||||
#include "PxPhysicsAPI.h"
|
||||
|
||||
#include "../snippetutils/SnippetUtils.h"
|
||||
|
||||
using namespace physx;
|
||||
|
||||
PxDefaultAllocator gAllocator;
|
||||
PxDefaultErrorCallback gErrorCallback;
|
||||
|
||||
PxFoundation* gFoundation = NULL;
|
||||
PxPhysics* gPhysics = NULL;
|
||||
PxCooking* gCooking = NULL;
|
||||
|
||||
float rand(float loVal, float hiVal)
|
||||
{
|
||||
return loVal + float(rand()/float(RAND_MAX))*(hiVal - loVal);
|
||||
}
|
||||
|
||||
PxU32 rand(PxU32 loVal, PxU32 hiVal)
|
||||
{
|
||||
return loVal + PxU32(rand()%(hiVal - loVal));
|
||||
}
|
||||
|
||||
void indexToCoord(PxU32& x, PxU32& z, PxU32 index, PxU32 w)
|
||||
{
|
||||
x = index % w;
|
||||
z = index / w;
|
||||
}
|
||||
|
||||
// Creates a random terrain data.
|
||||
void createRandomTerrain(const PxVec3& origin, PxU32 numRows, PxU32 numColumns,
|
||||
PxReal cellSizeRow, PxReal cellSizeCol, PxReal heightScale,
|
||||
PxVec3*& vertices, PxU32*& indices)
|
||||
{
|
||||
PxU32 numX = (numColumns + 1);
|
||||
PxU32 numZ = (numRows + 1);
|
||||
PxU32 numVertices = numX*numZ;
|
||||
PxU32 numTriangles = numRows*numColumns * 2;
|
||||
|
||||
if (vertices == NULL)
|
||||
vertices = new PxVec3[numVertices];
|
||||
if (indices == NULL)
|
||||
indices = new PxU32[numTriangles * 3];
|
||||
|
||||
PxU32 currentIdx = 0;
|
||||
for (PxU32 i = 0; i <= numRows; i++)
|
||||
{
|
||||
for (PxU32 j = 0; j <= numColumns; j++)
|
||||
{
|
||||
PxVec3 v(origin.x + PxReal(j)*cellSizeRow, origin.y, origin.z + PxReal(i)*cellSizeCol);
|
||||
vertices[currentIdx++] = v;
|
||||
}
|
||||
}
|
||||
|
||||
currentIdx = 0;
|
||||
for (PxU32 i = 0; i < numRows; i++)
|
||||
{
|
||||
for (PxU32 j = 0; j < numColumns; j++)
|
||||
{
|
||||
PxU32 base = (numColumns + 1)*i + j;
|
||||
indices[currentIdx++] = base + 1;
|
||||
indices[currentIdx++] = base;
|
||||
indices[currentIdx++] = base + numColumns + 1;
|
||||
indices[currentIdx++] = base + numColumns + 2;
|
||||
indices[currentIdx++] = base + 1;
|
||||
indices[currentIdx++] = base + numColumns + 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (PxU32 i = 0; i < numVertices; i++)
|
||||
{
|
||||
PxVec3& v = vertices[i];
|
||||
v.y += heightScale * rand(-1.0f, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Setup common cooking params
|
||||
void setupCommonCookingParams(PxCookingParams& params, bool skipMeshCleanup, bool skipEdgeData)
|
||||
{
|
||||
// we suppress the triangle mesh remap table computation to gain some speed, as we will not need it
|
||||
// in this snippet
|
||||
params.suppressTriangleMeshRemapTable = true;
|
||||
|
||||
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking. The input mesh must be valid.
|
||||
// The following conditions are true for a valid triangle mesh :
|
||||
// 1. There are no duplicate vertices(within specified vertexWeldTolerance.See PxCookingParams::meshWeldTolerance)
|
||||
// 2. There are no large triangles(within specified PxTolerancesScale.)
|
||||
// It is recommended to run a separate validation check in debug/checked builds, see below.
|
||||
|
||||
if (!skipMeshCleanup)
|
||||
params.meshPreprocessParams &= ~static_cast<PxMeshPreprocessingFlags>(PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH);
|
||||
else
|
||||
params.meshPreprocessParams |= PxMeshPreprocessingFlag::eDISABLE_CLEAN_MESH;
|
||||
|
||||
// If DISABLE_ACTIVE_EDGES_PREDOCOMPUTE is set, the cooking does not compute the active (convex) edges, and instead
|
||||
// marks all edges as active. This makes cooking faster but can slow down contact generation. This flag may change
|
||||
// the collision behavior, as all edges of the triangle mesh will now be considered active.
|
||||
if (!skipEdgeData)
|
||||
params.meshPreprocessParams &= ~static_cast<PxMeshPreprocessingFlags>(PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE);
|
||||
else
|
||||
params.meshPreprocessParams |= PxMeshPreprocessingFlag::eDISABLE_ACTIVE_EDGES_PRECOMPUTE;
|
||||
}
|
||||
|
||||
// Creates a triangle mesh using BVH33 midphase with different settings.
|
||||
void createBV33TriangleMesh(PxU32 numVertices, const PxVec3* vertices, PxU32 numTriangles, const PxU32* indices,
|
||||
bool skipMeshCleanup, bool skipEdgeData, bool inserted, bool cookingPerformance, bool meshSizePerfTradeoff)
|
||||
{
|
||||
PxU64 startTime = SnippetUtils::getCurrentTimeCounterValue();
|
||||
|
||||
PxTriangleMeshDesc meshDesc;
|
||||
meshDesc.points.count = numVertices;
|
||||
meshDesc.points.data = vertices;
|
||||
meshDesc.points.stride = sizeof(PxVec3);
|
||||
meshDesc.triangles.count = numTriangles;
|
||||
meshDesc.triangles.data = indices;
|
||||
meshDesc.triangles.stride = 3 * sizeof(PxU32);
|
||||
|
||||
PxCookingParams params = gCooking->getParams();
|
||||
|
||||
// Create BVH33 midphase
|
||||
params.midphaseDesc = PxMeshMidPhase::eBVH33;
|
||||
|
||||
// setup common cooking params
|
||||
setupCommonCookingParams(params, skipMeshCleanup, skipEdgeData);
|
||||
|
||||
// The COOKING_PERFORMANCE flag for BVH33 midphase enables a fast cooking path at the expense of somewhat lower quality BVH construction.
|
||||
if (cookingPerformance)
|
||||
params.midphaseDesc.mBVH33Desc.meshCookingHint = PxMeshCookingHint::eCOOKING_PERFORMANCE;
|
||||
else
|
||||
params.midphaseDesc.mBVH33Desc.meshCookingHint = PxMeshCookingHint::eSIM_PERFORMANCE;
|
||||
|
||||
// If meshSizePerfTradeoff is set to true, smaller mesh cooked mesh is produced. The mesh size/performance trade-off
|
||||
// is controlled by setting the meshSizePerformanceTradeOff from 0.0f (smaller mesh) to 1.0f (larger mesh).
|
||||
if(meshSizePerfTradeoff)
|
||||
{
|
||||
params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
// using the default value
|
||||
params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff = 0.55f;
|
||||
}
|
||||
|
||||
gCooking->setParams(params);
|
||||
|
||||
#if defined(PX_CHECKED) || defined(PX_DEBUG)
|
||||
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking.
|
||||
// We should check the validity of provided triangles in debug/checked builds though.
|
||||
if (skipMeshCleanup)
|
||||
{
|
||||
PX_ASSERT(gCooking->validateTriangleMesh(meshDesc));
|
||||
}
|
||||
#endif // DEBUG
|
||||
|
||||
|
||||
PxTriangleMesh* triMesh = NULL;
|
||||
PxU32 meshSize = 0;
|
||||
|
||||
// The cooked mesh may either be saved to a stream for later loading, or inserted directly into PxPhysics.
|
||||
if (inserted)
|
||||
{
|
||||
triMesh = gCooking->createTriangleMesh(meshDesc, gPhysics->getPhysicsInsertionCallback());
|
||||
}
|
||||
else
|
||||
{
|
||||
PxDefaultMemoryOutputStream outBuffer;
|
||||
gCooking->cookTriangleMesh(meshDesc, outBuffer);
|
||||
|
||||
PxDefaultMemoryInputData stream(outBuffer.getData(), outBuffer.getSize());
|
||||
triMesh = gPhysics->createTriangleMesh(stream);
|
||||
|
||||
meshSize = outBuffer.getSize();
|
||||
}
|
||||
|
||||
// Print the elapsed time for comparison
|
||||
PxU64 stopTime = SnippetUtils::getCurrentTimeCounterValue();
|
||||
float elapsedTime = SnippetUtils::getElapsedTimeInMilliseconds(stopTime - startTime);
|
||||
printf("\t -----------------------------------------------\n");
|
||||
printf("\t Create triangle mesh with %d triangles: \n",numTriangles);
|
||||
cookingPerformance ? printf("\t\t Cooking performance on\n") : printf("\t\t Cooking performance off\n");
|
||||
inserted ? printf("\t\t Mesh inserted on\n") : printf("\t\t Mesh inserted off\n");
|
||||
!skipEdgeData ? printf("\t\t Precompute edge data on\n") : printf("\t\t Precompute edge data off\n");
|
||||
!skipMeshCleanup ? printf("\t\t Mesh cleanup on\n") : printf("\t\t Mesh cleanup off\n");
|
||||
printf("\t\t Mesh size/performance trade-off: %f \n", double(params.midphaseDesc.mBVH33Desc.meshSizePerformanceTradeOff));
|
||||
printf("\t Elapsed time in ms: %f \n", double(elapsedTime));
|
||||
if(!inserted)
|
||||
{
|
||||
printf("\t Mesh size: %d \n", meshSize);
|
||||
}
|
||||
|
||||
triMesh->release();
|
||||
}
|
||||
|
||||
// Creates a triangle mesh using BVH34 midphase with different settings.
|
||||
void createBV34TriangleMesh(PxU32 numVertices, const PxVec3* vertices, PxU32 numTriangles, const PxU32* indices,
|
||||
bool skipMeshCleanup, bool skipEdgeData, bool inserted, const PxU32 numTrisPerLeaf)
|
||||
{
|
||||
PxU64 startTime = SnippetUtils::getCurrentTimeCounterValue();
|
||||
|
||||
PxTriangleMeshDesc meshDesc;
|
||||
meshDesc.points.count = numVertices;
|
||||
meshDesc.points.data = vertices;
|
||||
meshDesc.points.stride = sizeof(PxVec3);
|
||||
meshDesc.triangles.count = numTriangles;
|
||||
meshDesc.triangles.data = indices;
|
||||
meshDesc.triangles.stride = 3 * sizeof(PxU32);
|
||||
|
||||
PxCookingParams params = gCooking->getParams();
|
||||
|
||||
// Create BVH34 midphase
|
||||
params.midphaseDesc = PxMeshMidPhase::eBVH34;
|
||||
|
||||
// setup common cooking params
|
||||
setupCommonCookingParams(params, skipMeshCleanup, skipEdgeData);
|
||||
|
||||
// Cooking mesh with less triangles per leaf produces larger meshes with better runtime performance
|
||||
// and worse cooking performance. Cooking time is better when more triangles per leaf are used.
|
||||
params.midphaseDesc.mBVH34Desc.numPrimsPerLeaf = numTrisPerLeaf;
|
||||
|
||||
gCooking->setParams(params);
|
||||
|
||||
#if defined(PX_CHECKED) || defined(PX_DEBUG)
|
||||
// If DISABLE_CLEAN_MESH is set, the mesh is not cleaned during the cooking.
|
||||
// We should check the validity of provided triangles in debug/checked builds though.
|
||||
if (skipMeshCleanup)
|
||||
{
|
||||
PX_ASSERT(gCooking->validateTriangleMesh(meshDesc));
|
||||
}
|
||||
#endif // DEBUG
|
||||
|
||||
|
||||
PxTriangleMesh* triMesh = NULL;
|
||||
PxU32 meshSize = 0;
|
||||
|
||||
// The cooked mesh may either be saved to a stream for later loading, or inserted directly into PxPhysics.
|
||||
if (inserted)
|
||||
{
|
||||
triMesh = gCooking->createTriangleMesh(meshDesc, gPhysics->getPhysicsInsertionCallback());
|
||||
}
|
||||
else
|
||||
{
|
||||
PxDefaultMemoryOutputStream outBuffer;
|
||||
gCooking->cookTriangleMesh(meshDesc, outBuffer);
|
||||
|
||||
PxDefaultMemoryInputData stream(outBuffer.getData(), outBuffer.getSize());
|
||||
triMesh = gPhysics->createTriangleMesh(stream);
|
||||
|
||||
meshSize = outBuffer.getSize();
|
||||
}
|
||||
|
||||
// Print the elapsed time for comparison
|
||||
PxU64 stopTime = SnippetUtils::getCurrentTimeCounterValue();
|
||||
float elapsedTime = SnippetUtils::getElapsedTimeInMilliseconds(stopTime - startTime);
|
||||
printf("\t -----------------------------------------------\n");
|
||||
printf("\t Create triangle mesh with %d triangles: \n", numTriangles);
|
||||
inserted ? printf("\t\t Mesh inserted on\n") : printf("\t\t Mesh inserted off\n");
|
||||
!skipEdgeData ? printf("\t\t Precompute edge data on\n") : printf("\t\t Precompute edge data off\n");
|
||||
!skipMeshCleanup ? printf("\t\t Mesh cleanup on\n") : printf("\t\t Mesh cleanup off\n");
|
||||
printf("\t\t Num triangles per leaf: %d \n", numTrisPerLeaf);
|
||||
printf("\t Elapsed time in ms: %f \n", double(elapsedTime));
|
||||
if (!inserted)
|
||||
{
|
||||
printf("\t Mesh size: %d \n", meshSize);
|
||||
}
|
||||
|
||||
triMesh->release();
|
||||
}
|
||||
|
||||
void createTriangleMeshes()
|
||||
{
|
||||
const PxU32 numColumns = 128;
|
||||
const PxU32 numRows = 128;
|
||||
const PxU32 numVertices = (numColumns + 1)*(numRows + 1);
|
||||
const PxU32 numTriangles = numColumns*numRows * 2;
|
||||
|
||||
PxVec3* vertices = new PxVec3[numVertices];
|
||||
PxU32* indices = new PxU32[numTriangles * 3];
|
||||
|
||||
srand(50);
|
||||
|
||||
createRandomTerrain(PxVec3(0.0f, 0.0f, 0.0f), numRows, numColumns, 1.0f, 1.0f, 1.f, vertices, indices);
|
||||
|
||||
// Create triangle mesh using BVH33 midphase with different settings
|
||||
printf("-----------------------------------------------\n");
|
||||
printf("Create triangles mesh using BVH33 midphase: \n\n");
|
||||
|
||||
// Favor runtime speed, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
|
||||
// These are the default settings, suitable for offline cooking.
|
||||
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, false, false, false, false, false);
|
||||
|
||||
// Favor mesh size, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
|
||||
createBV33TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, false, true);
|
||||
|
||||
// Favor cooking speed, skip mesh cleanup, but precompute active edges. Insert into PxPhysics.
|
||||
// These settings are suitable for runtime cooking, although selecting fast cooking may reduce
|
||||
// runtime performance of simulation and queries. We still need to ensure the triangles
|
||||
// are valid, so we perform a validation check in debug/checked builds.
|
||||
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, true, false, true, true, false);
|
||||
|
||||
// Favor cooking speed, skip mesh cleanup, and don't precompute the active edges. Insert into PxPhysics.
|
||||
// This is the fastest possible solution for runtime cooking, but all edges are marked as active, which can
|
||||
// further reduce runtime performance, and also affect behavior.
|
||||
createBV33TriangleMesh(numVertices,vertices,numTriangles,indices, false, true, true, true, false);
|
||||
|
||||
// Create triangle mesh using BVH34 midphase with different settings
|
||||
printf("-----------------------------------------------\n");
|
||||
printf("Create triangles mesh using BVH34 midphase: \n\n");
|
||||
|
||||
// Favor runtime speed, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
|
||||
// These are the default settings, suitable for offline cooking.
|
||||
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, 4);
|
||||
|
||||
// Favor mesh size, cleaning the mesh and precomputing active edges. Store the mesh in a stream.
|
||||
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, false, false, 15);
|
||||
|
||||
// Favor cooking speed, skip mesh cleanup, but precompute active edges. Insert into PxPhysics.
|
||||
// These settings are suitable for runtime cooking, although selecting more triangles per leaf may reduce
|
||||
// runtime performance of simulation and queries. We still need to ensure the triangles
|
||||
// are valid, so we perform a validation check in debug/checked builds.
|
||||
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, true, false, true, 15);
|
||||
|
||||
// Favor cooking speed, skip mesh cleanup, and don't precompute the active edges. Insert into PxPhysics.
|
||||
// This is the fastest possible solution for runtime cooking, but all edges are marked as active, which can
|
||||
// further reduce runtime performance, and also affect behavior.
|
||||
createBV34TriangleMesh(numVertices, vertices, numTriangles, indices, false, true, true, 15);
|
||||
|
||||
delete [] vertices;
|
||||
delete [] indices;
|
||||
}
|
||||
|
||||
void initPhysics()
|
||||
{
|
||||
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback);
|
||||
gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(),true);
|
||||
gCooking = PxCreateCooking(PX_PHYSICS_VERSION, *gFoundation, PxCookingParams(PxTolerancesScale()));
|
||||
|
||||
createTriangleMeshes();
|
||||
}
|
||||
|
||||
void cleanupPhysics()
|
||||
{
|
||||
gPhysics->release();
|
||||
gCooking->release();
|
||||
gFoundation->release();
|
||||
|
||||
printf("SnippetTriangleMeshCreate done.\n");
|
||||
}
|
||||
|
||||
|
||||
int snippetMain(int, const char*const*)
|
||||
{
|
||||
initPhysics();
|
||||
cleanupPhysics();
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user