This commit is contained in:
2025-11-28 23:13:44 +05:30
commit a3a8e79709
7360 changed files with 1156074 additions and 0 deletions

View File

@ -0,0 +1,504 @@
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
// ****************************************************************************
// This snippet illustrates how to use contact modification and sweeps to allow wheels to
// collide and react more naturally with the scene. In particular, the snippet shows how to
// use contact modification and ccd contact modification to select or ignore rigid body contact
// points between a shape representing a wheel and any other shape in the scene. The snippet
// also demonstrates the use of suspension sweeps instead of suspension raycasts.
// The snippet creates various static capsules with different radii, a ground plane, and a
// vehicle. The capsules are configured to be drivable surfaces. Additionally, the
// capsule and wheel shapes are configured with simulation filter data so that
// they
// (i) collide with each other with discrete collision detection
// (ii) collide with each other with continuous collision detection (CCD)
//(iii) trigger a contact modification callback
// (iv) trigger a ccd contact modification callback
// The contact modification callback is implemented with the class WheelContactModifyCallback.
// The function WheelContactModifyCallback::onContactModify identifies shape pairs that contain
// a wheel. Contact points for the shape pair are ignored or accepted with the SDK function
// PxVehicleModifyWheelContacts. CCD contact modification is implemented with the class
// WheelCCDContactModifyCallback. The function WheelCCDContactModifyCallback::onContactModify
// performs exactly the same role as WheelContactModifyCallback::onContactModify
// The threshold values POINT_REJECT_ANGLE and NORMAL_REJECT_ANGLE can be tuned
// to modify the conditions under which wheel contact points are ignored or accepted.
// It is a good idea to record and playback with pvd (PhysX Visual Debugger).
// ****************************************************************************
#include "PxPhysicsAPI.h"
#include <ctype.h>
#include "vehicle/PxVehicleUtil.h"
#include "../snippetvehiclecommon/SnippetVehicleSceneQuery.h"
#include "../snippetvehiclecommon/SnippetVehicleFilterShader.h"
#include "../snippetvehiclecommon/SnippetVehicleTireFriction.h"
#include "../snippetvehiclecommon/SnippetVehicleCreate.h"
#include "../snippetcommon/SnippetPVD.h"
#include "../snippetutils/SnippetUtils.h"
using namespace physx;
using namespace snippetvehicle;
PxDefaultAllocator gAllocator;
PxDefaultErrorCallback gErrorCallback;
PxFoundation* gFoundation = NULL;
PxPhysics* gPhysics = NULL;
PxDefaultCpuDispatcher* gDispatcher = NULL;
PxScene* gScene = NULL;
PxCooking* gCooking = NULL;
PxMaterial* gMaterial = NULL;
PxPvd* gPvd = NULL;
VehicleSceneQueryData* gVehicleSceneQueryData = NULL;
PxBatchQuery* gBatchQuery = NULL;
PxVehicleDrivableSurfaceToTireFrictionPairs* gFrictionPairs = NULL;
#define NUM_VEHICLES 2
PxRigidStatic* gGroundPlane = NULL;
PxVehicleDrive4W* gVehicle4W[NUM_VEHICLES] = { NULL, NULL };
ActorUserData gActorUserData[NUM_VEHICLES];
ShapeUserData gShapeUserDatas[NUM_VEHICLES][PX_MAX_NB_WHEELS];
const PxF32 xCoordVehicleStarts[NUM_VEHICLES] = { 0.0f, 20.0f };
//Angle thresholds used to categorize contacts as suspension contacts or rigid body contacts.
#define POINT_REJECT_ANGLE PxPi/4.0f
#define NORMAL_REJECT_ANGLE PxPi/4.0f
//Contact modification values.
#define WHEEL_TANGENT_VELOCITY_MULTIPLIER 0.1f
#define MAX_IMPULSE PX_MAX_F32
//PhysX Vehicles support blocking and non-blocking sweeps.
//Experiment with this define to switch between the two regimes.
#define BLOCKING_SWEEPS 0
//Define the maximum acceleration for dynamic bodies under the wheel.
#define MAX_ACCELERATION 50.0f
//Blocking sweeps require sweep hit buffers for just 1 hit per wheel.
//Non-blocking sweeps require more hits per wheel because they return all touches on the swept shape.
#if BLOCKING_SWEEPS
PxU16 gNbQueryHitsPerWheel = 1;
#else
PxU16 gNbQueryHitsPerWheel = 8;
#endif
//The class WheelContactModifyCallback identifies and modifies rigid body contacts
//that involve a wheel. Contacts that can be identified and managed by the suspension
//system are ignored. Any contacts that remain are modified to account for the rotation
//speed of the wheel around the rolling axis.
class WheelContactModifyCallback : public PxContactModifyCallback
{
public:
WheelContactModifyCallback()
: PxContactModifyCallback()
{
}
~WheelContactModifyCallback(){}
void onContactModify(PxContactModifyPair* const pairs, PxU32 count)
{
for(PxU32 i = 0; i < count ; i++)
{
const PxRigidActor** actors = pairs[i].actor;
const PxShape** shapes = pairs[i].shape;
//Search for actors that represent vehicles and shapes that represent wheels.
for(PxU32 j = 0; j < 2; j++)
{
const PxActor* actor = actors[j];
if(actor->userData && (static_cast<ActorUserData*>(actor->userData))->vehicle)
{
const PxVehicleWheels* vehicle = (static_cast<ActorUserData*>(actor->userData))->vehicle;
PX_ASSERT(vehicle->getRigidDynamicActor() == actors[j]);
const PxShape* shape = shapes[j];
if(shape->userData && (static_cast<ShapeUserData*>(shape->userData))->isWheel)
{
const PxU32 wheelId = (static_cast<ShapeUserData*>(shape->userData))->wheelId;
PX_ASSERT(wheelId < vehicle->mWheelsSimData.getNbWheels());
//Modify wheel contacts.
PxVehicleModifyWheelContacts(*vehicle, wheelId, WHEEL_TANGENT_VELOCITY_MULTIPLIER, MAX_IMPULSE, pairs[i]);
}
}
}
}
}
private:
};
WheelContactModifyCallback gWheelContactModifyCallback;
//The class WheelCCDContactModifyCallback identifies and modifies ccd contacts
//that involve a wheel. Contacts that can be identified and managed by the suspension
//system are ignored. Any contacts that remain are modified to account for the rotation
//speed of the wheel around the rolling axis.
class WheelCCDContactModifyCallback : public PxCCDContactModifyCallback
{
public:
WheelCCDContactModifyCallback()
: PxCCDContactModifyCallback()
{
}
~WheelCCDContactModifyCallback(){}
void onCCDContactModify(PxContactModifyPair* const pairs, PxU32 count)
{
for(PxU32 i = 0; i < count ; i++)
{
const PxRigidActor** actors = pairs[i].actor;
const PxShape** shapes = pairs[i].shape;
//Search for actors that represent vehicles and shapes that represent wheels.
for(PxU32 j = 0; j < 2; j++)
{
const PxActor* actor = actors[j];
if(actor->userData && (static_cast<ActorUserData*>(actor->userData))->vehicle)
{
const PxVehicleWheels* vehicle = (static_cast<ActorUserData*>(actor->userData))->vehicle;
PX_ASSERT(vehicle->getRigidDynamicActor() == actors[j]);
const PxShape* shape = shapes[j];
if(shape->userData && (static_cast<ShapeUserData*>(shape->userData))->isWheel)
{
const PxU32 wheelId = (static_cast<ShapeUserData*>(shape->userData))->wheelId;
PX_ASSERT(wheelId < vehicle->mWheelsSimData.getNbWheels());
//Modify wheel contacts.
PxVehicleModifyWheelContacts(*vehicle, wheelId, WHEEL_TANGENT_VELOCITY_MULTIPLIER, MAX_IMPULSE, pairs[i]);
}
}
}
}
}
};
WheelCCDContactModifyCallback gWheelCCDContactModifyCallback;
VehicleDesc initVehicleDesc(const PxFilterData& chassisSimFilterData, const PxFilterData& wheelSimFilterData, const PxU32 vehicleId)
{
//Set up the chassis mass, dimensions, moment of inertia, and center of mass offset.
//The moment of inertia is just the moment of inertia of a cuboid but modified for easier steering.
//Center of mass offset is 0.65m above the base of the chassis and 0.25m towards the front.
const PxF32 chassisMass = 1500.0f;
const PxVec3 chassisDims(2.5f,2.0f,5.0f);
const PxVec3 chassisMOI
((chassisDims.y*chassisDims.y + chassisDims.z*chassisDims.z)*chassisMass/12.0f,
(chassisDims.x*chassisDims.x + chassisDims.z*chassisDims.z)*0.8f*chassisMass/12.0f,
(chassisDims.x*chassisDims.x + chassisDims.y*chassisDims.y)*chassisMass/12.0f);
const PxVec3 chassisCMOffset(0.0f, -chassisDims.y*0.5f + 0.65f, 0.25f);
//Set up the wheel mass, radius, width, moment of inertia, and number of wheels.
//Moment of inertia is just the moment of inertia of a cylinder.
const PxF32 wheelMass = 20.0f;
const PxF32 wheelRadius = 0.5f;
const PxF32 wheelWidth = 0.4f;
const PxF32 wheelMOI = 0.5f*wheelMass*wheelRadius*wheelRadius;
const PxU32 nbWheels = 4;
VehicleDesc vehicleDesc;
vehicleDesc.chassisMass = chassisMass;
vehicleDesc.chassisDims = chassisDims;
vehicleDesc.chassisMOI = chassisMOI;
vehicleDesc.chassisCMOffset = chassisCMOffset;
vehicleDesc.chassisMaterial = gMaterial;
vehicleDesc.chassisSimFilterData = chassisSimFilterData;
vehicleDesc.wheelMass = wheelMass;
vehicleDesc.wheelRadius = wheelRadius;
vehicleDesc.wheelWidth = wheelWidth;
vehicleDesc.wheelMOI = wheelMOI;
vehicleDesc.numWheels = nbWheels;
vehicleDesc.wheelMaterial = gMaterial;
vehicleDesc.wheelSimFilterData = wheelSimFilterData;
vehicleDesc.actorUserData = &gActorUserData[vehicleId];
vehicleDesc.shapeUserDatas = gShapeUserDatas[vehicleId];
return vehicleDesc;
}
void initPhysics()
{
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback);
gPvd = PxCreatePvd(*gFoundation);
PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10);
gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL);
gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(),true, gPvd);
PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());
sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);
PxU32 numWorkers = 1;
gDispatcher = PxDefaultCpuDispatcherCreate(numWorkers);
sceneDesc.cpuDispatcher = gDispatcher;
sceneDesc.filterShader = VehicleFilterShader; //Set the filter shader
sceneDesc.contactModifyCallback = &gWheelContactModifyCallback; //Enable contact modification
sceneDesc.ccdContactModifyCallback = &gWheelCCDContactModifyCallback; //Enable ccd contact modification
sceneDesc.flags |= PxSceneFlag::eENABLE_CCD; //Enable ccd
gScene = gPhysics->createScene(sceneDesc);
PxPvdSceneClient* pvdClient = gScene->getScenePvdClient();
if(pvdClient)
{
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONTACTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, true);
}
gMaterial = gPhysics->createMaterial(0.1f, 0.1f, 0.01f);
gCooking = PxCreateCooking(PX_PHYSICS_VERSION, *gFoundation, PxCookingParams(PxTolerancesScale()));
/////////////////////////////////////////////
PxInitVehicleSDK(*gPhysics);
PxVehicleSetBasisVectors(PxVec3(0,1,0), PxVec3(0,0,1));
PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE);
PxVehicleSetSweepHitRejectionAngles(POINT_REJECT_ANGLE, NORMAL_REJECT_ANGLE);
PxVehicleSetMaxHitActorAcceleration(MAX_ACCELERATION);
//Create the batched scene queries for the suspension sweeps.
//Use the post-filter shader to reject hit shapes that overlap the swept wheel at the start pose of the sweep.
PxQueryHitType::Enum(*sceneQueryPreFilter)(PxFilterData, PxFilterData, const void*, PxU32, PxHitFlags&);
PxQueryHitType::Enum(*sceneQueryPostFilter)(PxFilterData, PxFilterData, const void*, PxU32, const PxQueryHit&);
#if BLOCKING_SWEEPS
sceneQueryPreFilter = &WheelSceneQueryPreFilterBlocking;
sceneQueryPostFilter = &WheelSceneQueryPostFilterBlocking;
#else
sceneQueryPreFilter = &WheelSceneQueryPreFilterNonBlocking;
sceneQueryPostFilter = &WheelSceneQueryPostFilterNonBlocking;
#endif
gVehicleSceneQueryData = VehicleSceneQueryData::allocate(NUM_VEHICLES, PX_MAX_NB_WHEELS, gNbQueryHitsPerWheel, NUM_VEHICLES, sceneQueryPreFilter, sceneQueryPostFilter, gAllocator);
gBatchQuery = VehicleSceneQueryData::setUpBatchedSceneQuery(0, *gVehicleSceneQueryData, gScene);
//Create the friction table for each combination of tire and surface type.
gFrictionPairs = createFrictionPairs(gMaterial);
//Create a plane to drive on.
PxFilterData groundPlaneSimFilterData(COLLISION_FLAG_GROUND, COLLISION_FLAG_GROUND_AGAINST, 0, 0);
gGroundPlane = createDrivablePlane(groundPlaneSimFilterData, gMaterial, gPhysics);
gScene->addActor(*gGroundPlane);
//Create several static obstacles for the first vehicle to drive on.
// (i) collide only with wheel shapes
// (ii) have continuous collision detection (CCD) enabled
//(iii) have contact modification enabled
// (iv) are configured to be drivable surfaces
const PxF32 capsuleRadii[4] = {0.05f, 0.1f, 0.125f, 0.135f};
const PxF32 capsuleZ[4] = {5.0f, 10.0f, 15.0f, 20.0f};
for(PxU32 i = 0; i < 4; i++)
{
PxTransform t(PxVec3(xCoordVehicleStarts[0], capsuleRadii[i], capsuleZ[i]), PxQuat(PxIdentity));
PxRigidStatic* rd = gPhysics->createRigidStatic(t);
PxCapsuleGeometry capsuleGeom(capsuleRadii[i], 3.0f);
PxShape* shape = PxRigidActorExt::createExclusiveShape(*rd, capsuleGeom, *gMaterial);
PxFilterData simFilterData(COLLISION_FLAG_OBSTACLE, COLLISION_FLAG_WHEEL, PxPairFlag::eMODIFY_CONTACTS | PxPairFlag::eDETECT_CCD_CONTACT, 0);
shape->setSimulationFilterData(simFilterData);
PxFilterData qryFilterData;
setupDrivableSurface(qryFilterData);
shape->setQueryFilterData(qryFilterData);
gScene->addActor(*rd);
}
const PxF32 boxHalfHeights[1] = {1.0f};
const PxF32 boxZ[1] = {30.0f};
for(PxU32 i = 0; i < 1; i++)
{
PxTransform t(PxVec3(xCoordVehicleStarts[0], boxHalfHeights[i], boxZ[i]), PxQuat(PxIdentity));
PxRigidStatic* rd = gPhysics->createRigidStatic(t);
PxBoxGeometry boxGeom(PxVec3(3.0f, boxHalfHeights[i], 3.0f));
PxShape* shape = PxRigidActorExt::createExclusiveShape(*rd, boxGeom, *gMaterial);
PxFilterData simFilterData(COLLISION_FLAG_OBSTACLE, COLLISION_FLAG_WHEEL, PxPairFlag::eMODIFY_CONTACTS | PxPairFlag::eDETECT_CCD_CONTACT, 0);
shape->setSimulationFilterData(simFilterData);
PxFilterData qryFilterData;
setupDrivableSurface(qryFilterData);
shape->setQueryFilterData(qryFilterData);
gScene->addActor(*rd);
}
//Create a pile of dynamic objects for the second vehicle to drive on.
// (i) collide only with wheel shapes
// (ii) have continuous collision detection (CCD) enabled
//(iii) have contact modification enabled
// (iv) are configured to be drivable surfaces
{
for (PxU32 i = 0; i < 64; i++)
{
PxTransform t(PxVec3(xCoordVehicleStarts[1] + i*0.01f, 2.0f + i*0.25f, 20.0f + i*0.025f), PxQuat(PxPi*0.5f, PxVec3(0, 1, 0)));
PxRigidDynamic* rd = gPhysics->createRigidDynamic(t);
PxBoxGeometry boxGeom(PxVec3(0.08f, 0.25f, 1.0f));
PxShape* shape = PxRigidActorExt::createExclusiveShape(*rd, boxGeom, *gMaterial);
PxFilterData simFilterData(COLLISION_FLAG_OBSTACLE, COLLISION_FLAG_OBSTACLE_AGAINST, PxPairFlag::eMODIFY_CONTACTS | PxPairFlag::eDETECT_CCD_CONTACT, 0);
shape->setSimulationFilterData(simFilterData);
PxFilterData qryFilterData;
setupDrivableSurface(qryFilterData);
shape->setQueryFilterData(qryFilterData);
PxRigidBodyExt::updateMassAndInertia(*rd, 30.0f);
gScene->addActor(*rd);
}
}
//Create two vehicles that will drive on the obstacles.
//The vehicles are configured with wheels that
// (i) collide with obstacles
// (ii) have continuous collision detection (CCD) enabled
//(iii) have contact modification enabled
//The vehicle chassis only collides with the ground to highlight the collision between the wheels and the obstacles.
for (PxU32 i = 0; i < NUM_VEHICLES; i++)
{
PxFilterData chassisSimFilterData(COLLISION_FLAG_CHASSIS, COLLISION_FLAG_GROUND, 0, 0);
PxFilterData wheelSimFilterData(COLLISION_FLAG_WHEEL, COLLISION_FLAG_WHEEL, PxPairFlag::eDETECT_CCD_CONTACT | PxPairFlag::eMODIFY_CONTACTS, 0);
VehicleDesc vehicleDesc = initVehicleDesc(chassisSimFilterData, wheelSimFilterData, i);
gVehicle4W[i] = createVehicle4W(vehicleDesc, gPhysics, gCooking);
PxTransform startTransform(PxVec3(xCoordVehicleStarts[i], (vehicleDesc.chassisDims.y*0.5f + vehicleDesc.wheelRadius + 1.0f), 0), PxQuat(PxIdentity));
gVehicle4W[i]->getRigidDynamicActor()->setGlobalPose(startTransform);
gVehicle4W[i]->getRigidDynamicActor()->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD, true);
gScene->addActor(*gVehicle4W[i]->getRigidDynamicActor());
//Set the vehicle to rest in first gear.
//Set the vehicle to use auto-gears.
gVehicle4W[i]->setToRestState();
gVehicle4W[i]->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST);
gVehicle4W[i]->mDriveDynData.setUseAutoGears(true);
}
}
void stepPhysics()
{
const PxF32 timestep = 1.0f/60.0f;
//Set the vehicles to accelerate forwards.
for (PxU32 i = 0; i < 2; i++)
{
gVehicle4W[i]->mDriveDynData.setAnalogInput(PxVehicleDrive4WControl::eANALOG_INPUT_ACCEL, 0.55f);
}
//Scene update.
gScene->simulate(timestep);
gScene->fetchResults(true);
//Suspension sweeps (instead of raycasts).
//Sweeps provide more information about the geometry under the wheel.
PxVehicleWheels* vehicles[NUM_VEHICLES] = {gVehicle4W[0], gVehicle4W[1]};
PxSweepQueryResult* sweepResults = gVehicleSceneQueryData->getSweepQueryResultBuffer(0);
const PxU32 sweepResultsSize = gVehicleSceneQueryData->getQueryResultBufferSize();
PxVehicleSuspensionSweeps(gBatchQuery, NUM_VEHICLES, vehicles, sweepResultsSize, sweepResults, gNbQueryHitsPerWheel, NULL, 1.0f, 1.01f);
//Vehicle update.
const PxVec3 grav = gScene->getGravity();
PxWheelQueryResult wheelQueryResults[PX_MAX_NB_WHEELS][NUM_VEHICLES];
PxVehicleWheelQueryResult vehicleQueryResults[NUM_VEHICLES] =
{
{ wheelQueryResults[0], gVehicle4W[0]->mWheelsSimData.getNbWheels() },
{ wheelQueryResults[1] , gVehicle4W[1]->mWheelsSimData.getNbWheels() },
};
PxVehicleUpdates(timestep, grav, *gFrictionPairs, NUM_VEHICLES, vehicles, vehicleQueryResults);
}
void cleanupPhysics()
{
for (PxU32 i = 0; i < NUM_VEHICLES; i++)
{
gVehicle4W[i]->getRigidDynamicActor()->release();
gVehicle4W[i]->free();
}
PX_RELEASE(gGroundPlane);
PX_RELEASE(gBatchQuery);
gVehicleSceneQueryData->free(gAllocator);
PX_RELEASE(gFrictionPairs);
PxCloseVehicleSDK();
PX_RELEASE(gMaterial);
PX_RELEASE(gCooking);
PX_RELEASE(gScene);
PX_RELEASE(gDispatcher);
PX_RELEASE(gPhysics);
if(gPvd)
{
PxPvdTransport* transport = gPvd->getTransport();
gPvd->release(); gPvd = NULL;
PX_RELEASE(transport);
}
PX_RELEASE(gFoundation);
printf("SnippetVehicleContactMod done.\n");
}
void keyPress(unsigned char key, const PxTransform& camera)
{
PX_UNUSED(camera);
PX_UNUSED(key);
}
int snippetMain(int, const char*const*)
{
#ifdef RENDER_SNIPPET
extern void renderLoop();
renderLoop();
#else
initPhysics();
PxU32 count = 0;
PxU32 maxCount =1000;
while(count < maxCount)
{
stepPhysics();
count++;
}
cleanupPhysics();
#endif
return 0;
}

View File

@ -0,0 +1,120 @@
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifdef RENDER_SNIPPET
#include <vector>
#include "PxPhysicsAPI.h"
#include "../snippetrender/SnippetRender.h"
#include "../snippetrender/SnippetCamera.h"
using namespace physx;
extern void initPhysics();
extern void stepPhysics();
extern void cleanupPhysics();
extern void keyPress(unsigned char key, const PxTransform& camera);
extern PxScene* gScene;
namespace
{
Snippets::Camera* sCamera;
void motionCallback(int x, int y)
{
sCamera->handleMotion(x, y);
}
void keyboardCallback(unsigned char key, int x, int y)
{
if(key==27)
exit(0);
if(!sCamera->handleKey(key, x, y))
keyPress(key, sCamera->getTransform());
}
void mouseCallback(int button, int state, int x, int y)
{
sCamera->handleMouse(button, state, x, y);
}
void idleCallback()
{
glutPostRedisplay();
}
void renderCallback()
{
stepPhysics();
Snippets::startRender(sCamera->getEye(), sCamera->getDir());
PxU32 nbActors = gScene->getNbActors(PxActorTypeFlag::eRIGID_DYNAMIC | PxActorTypeFlag::eRIGID_STATIC);
if(nbActors)
{
std::vector<PxRigidActor*> actors(nbActors);
gScene->getActors(PxActorTypeFlag::eRIGID_DYNAMIC | PxActorTypeFlag::eRIGID_STATIC, reinterpret_cast<PxActor**>(&actors[0]), nbActors);
Snippets::renderActors(&actors[0], static_cast<PxU32>(actors.size()), true);
}
Snippets::finishRender();
}
void exitCallback(void)
{
delete sCamera;
cleanupPhysics();
}
}
void renderLoop()
{
sCamera = new Snippets::Camera(PxVec3(10.0f, 10.0f, 10.0f), PxVec3(-0.6f,-0.2f,-0.7f));
Snippets::setupDefaultWindow("PhysX Snippet Vehicle4W");
Snippets::setupDefaultRenderState();
glutIdleFunc(idleCallback);
glutDisplayFunc(renderCallback);
glutKeyboardFunc(keyboardCallback);
glutMouseFunc(mouseCallback);
glutMotionFunc(motionCallback);
motionCallback(0,0);
atexit(exitCallback);
initPhysics();
glutMainLoop();
}
#endif