// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. // **************************************************************************** // This snippet illustrates simple use of physx // // It creates a number of box stacks on a plane, and if rendering, allows the // user to create new stacks and fire a ball from the camera position // **************************************************************************** #include #include "PxPhysicsAPI.h" #include "../snippetcommon/SnippetPrint.h" #include "../snippetcommon/SnippetPVD.h" #include "../snippetutils/SnippetUtils.h" using namespace physx; PxDefaultAllocator gAllocator; PxDefaultErrorCallback gErrorCallback; PxFoundation* gFoundation = NULL; PxPhysics* gPhysics = NULL; PxDefaultCpuDispatcher* gDispatcher = NULL; PxScene* gScene = NULL; PxMaterial* gMaterial = NULL; PxPvd* gPvd = NULL; PxCudaContextManager* gCudaContextManager = NULL; PxReal stackZ = 10.0f; PxRigidDynamic* createDynamic(const PxTransform& t, const PxGeometry& geometry, const PxVec3& velocity=PxVec3(0)) { PxRigidDynamic* dynamic = PxCreateDynamic(*gPhysics, t, geometry, *gMaterial, 10.0f); dynamic->setAngularDamping(0.5f); dynamic->setLinearVelocity(velocity); gScene->addActor(*dynamic); return dynamic; } void createStack(const PxTransform& t, PxU32 size, PxReal halfExtent) { PxShape* shape = gPhysics->createShape(PxBoxGeometry(halfExtent, halfExtent, halfExtent), *gMaterial); for(PxU32 i=0; icreateRigidDynamic(t.transform(localTm)); body->attachShape(*shape); PxRigidBodyExt::updateMassAndInertia(*body, 10.0f); gScene->addActor(*body); } } shape->release(); } void initPhysics(bool /*interactive*/) { gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback); gPvd = PxCreatePvd(*gFoundation); PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10); gPvd->connect(*transport, PxPvdInstrumentationFlag::ePROFILE); gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(), true, gPvd); PxCudaContextManagerDesc cudaContextManagerDesc; #ifdef RENDER_SNIPPET cudaContextManagerDesc.interopMode = PxCudaInteropMode::OGL_INTEROP; //Choose interop mode. As the snippets use OGL, we select OGL_INTEROP //when using D3D, cudaContextManagerDesc.graphicsDevice must be set as the graphics device pointer. #else cudaContextManagerDesc.interopMode = PxCudaInteropMode::NO_INTEROP; #endif gCudaContextManager = PxCreateCudaContextManager(*gFoundation, cudaContextManagerDesc, PxGetProfilerCallback()); //Create the CUDA context manager, required for GRB to dispatch CUDA kernels. if( gCudaContextManager ) { if( !gCudaContextManager->contextIsValid() ) { gCudaContextManager->release(); gCudaContextManager = NULL; } } PxSceneDesc sceneDesc(gPhysics->getTolerancesScale()); sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f); gDispatcher = PxDefaultCpuDispatcherCreate(4); //Create a CPU dispatcher using 4 worther threads sceneDesc.cpuDispatcher = gDispatcher; sceneDesc.filterShader = PxDefaultSimulationFilterShader; sceneDesc.cudaContextManager = gCudaContextManager; //Set the CUDA context manager, used by GRB. sceneDesc.flags |= PxSceneFlag::eENABLE_GPU_DYNAMICS; //Enable GPU dynamics - without this enabled, simulation (contact gen and solver) will run on the CPU. sceneDesc.flags |= PxSceneFlag::eENABLE_PCM; //Enable PCM. PCM NP is supported on GPU. Legacy contact gen will fall back to CPU sceneDesc.flags |= PxSceneFlag::eENABLE_STABILIZATION; //Improve solver stability by enabling post-stabilization. sceneDesc.broadPhaseType = PxBroadPhaseType::eGPU; //Enable GPU broad phase. Without this set, broad phase will run on the CPU. sceneDesc.gpuMaxNumPartitions = 8; //Defines the maximum number of partitions used by the solver. Only power-of-2 values are valid. //A value of 8 generally gives best balance between performance and stability. gScene = gPhysics->createScene(sceneDesc); PxPvdSceneClient* pvdClient = gScene->getScenePvdClient(); if (pvdClient) { pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, false); pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONTACTS, false); pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, false); } gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f); PxRigidStatic* groundPlane = PxCreatePlane(*gPhysics, PxPlane(0,1,0,0), *gMaterial); gScene->addActor(*groundPlane); for(PxU32 i=0;i<40;i++) createStack(PxTransform(PxVec3(0,0,stackZ-=10.0f)), 20, 1.0f); PxRigidDynamic* ball = createDynamic(PxTransform(PxVec3(0,20,100)), PxSphereGeometry(5), PxVec3(0,-25,-100)); PxRigidBodyExt::updateMassAndInertia(*ball, 1000.f); } void stepPhysics(bool /*interactive*/) { gScene->simulate(1.0f/60.0f); gScene->fetchResults(true); } void cleanupPhysics(bool /*interactive*/) { PX_RELEASE(gScene); PX_RELEASE(gDispatcher); PX_RELEASE(gPhysics); if(gPvd) { PxPvdTransport* transport = gPvd->getTransport(); gPvd->release(); gPvd = NULL; PX_RELEASE(transport); } PX_RELEASE(gCudaContextManager); PX_RELEASE(gFoundation); printf("SnippetHelloWorld done.\n"); } void keyPress(const char key, const PxTransform& camera) { switch(toupper(key)) { case 'B': createStack(PxTransform(PxVec3(0,0,stackZ-=10.0f)), 10, 2.0f); break; case ' ': createDynamic(camera, PxSphereGeometry(3.0f), camera.rotate(PxVec3(0,0,-1))*200); break; } } int snippetMain(int, const char*const*) { #ifdef RENDER_SNIPPET extern void renderLoop(); renderLoop(); #else static const PxU32 frameCount = 100; initPhysics(false); for(PxU32 i=0; i