// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. // **************************************************************************** // This snippet shows how to coordinate threads performing asynchronous // work during the scene simulation. After simulate() is called, user threads // are started that perform ray-casts against the scene. The call to // fetchResults() is delayed until all ray-casts have completed. // **************************************************************************** #include #include "PxPhysicsAPI.h" #include "../snippetutils/SnippetUtils.h" #include "../snippetcommon/SnippetPrint.h" #include "../snippetcommon/SnippetPVD.h" using namespace physx; PxDefaultAllocator gAllocator; PxDefaultErrorCallback gErrorCallback; PxFoundation* gFoundation = NULL; PxPhysics* gPhysics = NULL; PxDefaultCpuDispatcher* gDispatcher = NULL; PxScene* gScene = NULL; PxMaterial* gMaterial = NULL; PxPvd* gPvd = NULL; struct RaycastThread { SnippetUtils::Sync* mWorkReadySyncHandle; SnippetUtils::Thread* mThreadHandle; }; const PxU32 gNumThreads = 1; RaycastThread gThreads[gNumThreads]; SnippetUtils::Sync* gWorkDoneSyncHandle; const PxI32 gRayCount = 1024; volatile PxI32 gRaysAvailable; volatile PxI32 gRaysCompleted; static PxVec3 randVec3() { return (PxVec3(float(rand())/float(RAND_MAX), float(rand())/float(RAND_MAX), float(rand())/float(RAND_MAX))*2.0f - PxVec3(1.0f)).getNormalized(); } static void threadExecute(void* data) { RaycastThread* raycastThread = static_cast(data); // Perform random raycasts against the scene until stop. for(;;) { // Wait here for the sync to be set then reset the sync // to ensure that we only perform raycast work after the // sync has been set again. SnippetUtils::syncWait(raycastThread->mWorkReadySyncHandle); SnippetUtils::syncReset(raycastThread->mWorkReadySyncHandle); // If the thread has been signaled to quit then exit this function. if (SnippetUtils::threadQuitIsSignalled(raycastThread->mThreadHandle)) break; // Perform a fixed number of random raycasts against the scene // and share the work between multiple threads. while (SnippetUtils::atomicDecrement(&gRaysAvailable) >= 0) { PxVec3 dir = randVec3(); PxRaycastBuffer buf; gScene->raycast(PxVec3(0.0f), dir.getNormalized(), 1000.0f, buf, PxHitFlag::eDEFAULT); // If this is the last raycast then signal this to the main thread. if (SnippetUtils::atomicIncrement(&gRaysCompleted) == gRayCount) { SnippetUtils::syncSet(gWorkDoneSyncHandle); } } } // Quit the current thread. SnippetUtils::threadQuit(raycastThread->mThreadHandle); } void createStack(const PxTransform& t, PxU32 size, PxReal halfExtent) { PxShape* shape = gPhysics->createShape(PxBoxGeometry(halfExtent, halfExtent, halfExtent), *gMaterial); for(PxU32 i=0; icreateRigidDynamic(t.transform(localTm)); body->attachShape(*shape); PxRigidBodyExt::updateMassAndInertia(*body, 10.0f); gScene->addActor(*body); } } shape->release(); } void createPhysicsAndScene() { gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback); gPvd = PxCreatePvd(*gFoundation); PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10); gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL); gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(),true,gPvd); gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f); PxSceneDesc sceneDesc(gPhysics->getTolerancesScale()); sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f); PxU32 numCores = SnippetUtils::getNbPhysicalCores(); gDispatcher = PxDefaultCpuDispatcherCreate(numCores == 0 ? 0 : numCores - 1); sceneDesc.cpuDispatcher = gDispatcher; sceneDesc.filterShader = PxDefaultSimulationFilterShader; gScene = gPhysics->createScene(sceneDesc); PxRigidStatic* groundPlane = PxCreatePlane(*gPhysics, PxPlane(0,1,0,0), *gMaterial); gScene->addActor(*groundPlane); for(PxU32 i=0;i<5;i++) createStack(PxTransform(PxVec3(0,0,i*10.0f)), 10, 2.0f); } void createRaycastThreads() { // Create and start threads that will perform raycasts. // Create a sync for each thread so that a signal may be sent // from the main thread to the raycast thread that it can start // performing raycasts. for (PxU32 i=0; i < gNumThreads; ++i) { //Create a sync. gThreads[i].mWorkReadySyncHandle = SnippetUtils::syncCreate(); //Create and start a thread. gThreads[i].mThreadHandle = SnippetUtils::threadCreate(threadExecute, &gThreads[i]); } // Create another sync so that the raycast threads can signal to the main // thread that they have finished performing their raycasts. gWorkDoneSyncHandle = SnippetUtils::syncCreate(); } void initPhysics() { createPhysicsAndScene(); createRaycastThreads(); } void stepPhysics() { // Start simulation gScene->simulate(1.0f/60.0f); // Start ray-cast threads gRaysAvailable = gRayCount; gRaysCompleted = 0; // Signal to each raycast thread that they can start performing raycasts. for (PxU32 i=0; i < gNumThreads; ++i) { SnippetUtils::syncSet(gThreads[i].mWorkReadySyncHandle); } // Wait for raycast threads to finish. SnippetUtils::syncWait(gWorkDoneSyncHandle); SnippetUtils::syncReset(gWorkDoneSyncHandle); // Fetch simulation results gScene->fetchResults(true); } void cleanupPhysics() { // Signal threads to quit. for (PxU32 i=0; i < gNumThreads; ++i) { SnippetUtils::threadSignalQuit(gThreads[i].mThreadHandle); SnippetUtils::syncSet(gThreads[i].mWorkReadySyncHandle); } // Clean up raycast threads and syncs. for (PxU32 i=0; i < gNumThreads; ++i) { SnippetUtils::threadWaitForQuit(gThreads[i].mThreadHandle); SnippetUtils::threadRelease(gThreads[i].mThreadHandle); SnippetUtils::syncRelease(gThreads[i].mWorkReadySyncHandle); } // Clean up the sync for the main thread. SnippetUtils::syncRelease(gWorkDoneSyncHandle); PX_RELEASE(gScene); PX_RELEASE(gDispatcher); PX_RELEASE(gPhysics); if(gPvd) { PxPvdTransport* transport = gPvd->getTransport(); gPvd->release(); gPvd = NULL; PX_RELEASE(transport); } PX_RELEASE(gFoundation); printf("SnippetMultiThreading done.\n"); } int snippetMain(int, const char*const*) { initPhysics(); for(PxU32 i=0; i<100; ++i) stepPhysics(); cleanupPhysics(); return 0; }