// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. // **************************************************************************** // This snippet illustrates how to configure a PhysX vehicle when meters are not // the chosen length scale. The snippet sets up a vehicle with meters as the // adopted length scale and then modifies the vehicle parameters so that they represent // the same vehicle but with centimeters as the chosen length scale. It is written in // a way that allows any length scale to be chosen. A key function here is the function // customizeVehicleToLengthScale. // It is a good idea to record and playback with pvd (PhysX Visual Debugger). // **************************************************************************** #include #include "PxPhysicsAPI.h" #include "vehicle/PxVehicleUtil.h" #include "../snippetvehiclecommon/SnippetVehicleSceneQuery.h" #include "../snippetvehiclecommon/SnippetVehicleFilterShader.h" #include "../snippetvehiclecommon/SnippetVehicleTireFriction.h" #include "../snippetvehiclecommon/SnippetVehicleCreate.h" #include "../snippetcommon/SnippetPrint.h" #include "../snippetcommon/SnippetPVD.h" #include "../snippetutils/SnippetUtils.h" using namespace physx; using namespace snippetvehicle; PxDefaultAllocator gAllocator; PxDefaultErrorCallback gErrorCallback; PxFoundation* gFoundation = NULL; PxPhysics* gPhysics = NULL; PxDefaultCpuDispatcher* gDispatcher = NULL; PxScene* gScene = NULL; PxCooking* gCooking = NULL; PxMaterial* gMaterial = NULL; PxPvd* gPvd = NULL; VehicleSceneQueryData* gVehicleSceneQueryData = NULL; PxBatchQuery* gBatchQuery = NULL; PxVehicleDrivableSurfaceToTireFrictionPairs* gFrictionPairs = NULL; PxRigidStatic* gGroundPlane = NULL; PxVehicleDrive4W* gVehicle4W = NULL; bool gIsVehicleInAir = true; PxF32 gSteerVsForwardSpeedData[2*8]= { 0.0f, 0.75f, 5.0f, 0.75f, 30.0f, 0.125f, 120.0f, 0.1f, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32, PX_MAX_F32 }; PxFixedSizeLookupTable<8> gSteerVsForwardSpeedTable(gSteerVsForwardSpeedData,4); PxVehicleKeySmoothingData gKeySmoothingData= { { 6.0f, //rise rate eANALOG_INPUT_ACCEL 6.0f, //rise rate eANALOG_INPUT_BRAKE 6.0f, //rise rate eANALOG_INPUT_HANDBRAKE 2.5f, //rise rate eANALOG_INPUT_STEER_LEFT 2.5f, //rise rate eANALOG_INPUT_STEER_RIGHT }, { 10.0f, //fall rate eANALOG_INPUT_ACCEL 10.0f, //fall rate eANALOG_INPUT_BRAKE 10.0f, //fall rate eANALOG_INPUT_HANDBRAKE 5.0f, //fall rate eANALOG_INPUT_STEER_LEFT 5.0f //fall rate eANALOG_INPUT_STEER_RIGHT } }; PxVehiclePadSmoothingData gPadSmoothingData= { { 6.0f, //rise rate eANALOG_INPUT_ACCEL 6.0f, //rise rate eANALOG_INPUT_BRAKE 6.0f, //rise rate eANALOG_INPUT_HANDBRAKE 2.5f, //rise rate eANALOG_INPUT_STEER_LEFT 2.5f, //rise rate eANALOG_INPUT_STEER_RIGHT }, { 10.0f, //fall rate eANALOG_INPUT_ACCEL 10.0f, //fall rate eANALOG_INPUT_BRAKE 10.0f, //fall rate eANALOG_INPUT_HANDBRAKE 5.0f, //fall rate eANALOG_INPUT_STEER_LEFT 5.0f //fall rate eANALOG_INPUT_STEER_RIGHT } }; PxVehicleDrive4WRawInputData gVehicleInputData; enum DriveMode { eDRIVE_MODE_ACCEL_FORWARDS=0, eDRIVE_MODE_ACCEL_REVERSE, eDRIVE_MODE_HARD_TURN_LEFT, eDRIVE_MODE_HANDBRAKE_TURN_LEFT, eDRIVE_MODE_HARD_TURN_RIGHT, eDRIVE_MODE_HANDBRAKE_TURN_RIGHT, eDRIVE_MODE_BRAKE, eDRIVE_MODE_NONE }; DriveMode gDriveModeOrder[] = { eDRIVE_MODE_BRAKE, eDRIVE_MODE_ACCEL_FORWARDS, eDRIVE_MODE_BRAKE, eDRIVE_MODE_ACCEL_REVERSE, eDRIVE_MODE_BRAKE, eDRIVE_MODE_HARD_TURN_LEFT, eDRIVE_MODE_BRAKE, eDRIVE_MODE_HARD_TURN_RIGHT, eDRIVE_MODE_ACCEL_FORWARDS, eDRIVE_MODE_HANDBRAKE_TURN_LEFT, eDRIVE_MODE_ACCEL_FORWARDS, eDRIVE_MODE_HANDBRAKE_TURN_RIGHT, eDRIVE_MODE_NONE }; PxF32 gVehicleModeLifetime = 4.0f; PxF32 gVehicleModeTimer = 0.0f; PxU32 gVehicleOrderProgress = 0; bool gVehicleOrderComplete = false; bool gMimicKeyInputs = true; enum { eLengthScaleCentimeters=0, eLengthScaleInches }; PxF32 gLengthScales[2] = {100.0f, 39.3701f}; PxF32 gLengthScale = gLengthScales[eLengthScaleInches]; VehicleDesc initVehicleDesc() { //Set up the chassis mass, dimensions, moment of inertia, and center of mass offset. //The moment of inertia is just the moment of inertia of a cuboid but modified for easier steering. //Center of mass offset is 0.65m above the base of the chassis and 0.25m towards the front. const PxF32 chassisMass = 1500.0f; const PxVec3 chassisDims(2.5f,2.0f,5.0f); const PxVec3 chassisMOI ((chassisDims.y*chassisDims.y + chassisDims.z*chassisDims.z)*chassisMass/12.0f, (chassisDims.x*chassisDims.x + chassisDims.z*chassisDims.z)*0.8f*chassisMass/12.0f, (chassisDims.x*chassisDims.x + chassisDims.y*chassisDims.y)*chassisMass/12.0f); const PxVec3 chassisCMOffset(0.0f, -chassisDims.y*0.5f + 0.65f, 0.25f); //Set up the wheel mass, radius, width, moment of inertia, and number of wheels. //Moment of inertia is just the moment of inertia of a cylinder. const PxF32 wheelMass = 20.0f; const PxF32 wheelRadius = 0.5f; const PxF32 wheelWidth = 0.4f; const PxF32 wheelMOI = 0.5f*wheelMass*wheelRadius*wheelRadius; const PxU32 nbWheels = 4; VehicleDesc vehicleDesc; vehicleDesc.chassisMass = chassisMass; vehicleDesc.chassisDims = chassisDims; vehicleDesc.chassisMOI = chassisMOI; vehicleDesc.chassisCMOffset = chassisCMOffset; vehicleDesc.chassisMaterial = gMaterial; vehicleDesc.chassisSimFilterData = PxFilterData(COLLISION_FLAG_CHASSIS, COLLISION_FLAG_CHASSIS_AGAINST, 0, 0); vehicleDesc.wheelMass = wheelMass; vehicleDesc.wheelRadius = wheelRadius; vehicleDesc.wheelWidth = wheelWidth; vehicleDesc.wheelMOI = wheelMOI; vehicleDesc.numWheels = nbWheels; vehicleDesc.wheelMaterial = gMaterial; vehicleDesc.chassisSimFilterData = PxFilterData(COLLISION_FLAG_WHEEL, COLLISION_FLAG_WHEEL_AGAINST, 0, 0); return vehicleDesc; } void startAccelerateForwardsMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalAccel(true); } else { gVehicleInputData.setAnalogAccel(1.0f); } } void startAccelerateReverseMode() { gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eREVERSE); if(gMimicKeyInputs) { gVehicleInputData.setDigitalAccel(true); } else { gVehicleInputData.setAnalogAccel(1.0f); } } void startBrakeMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalBrake(true); } else { gVehicleInputData.setAnalogBrake(1.0f); } } void startTurnHardLeftMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalAccel(true); gVehicleInputData.setDigitalSteerLeft(true); } else { gVehicleInputData.setAnalogAccel(true); gVehicleInputData.setAnalogSteer(-1.0f); } } void startTurnHardRightMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalAccel(true); gVehicleInputData.setDigitalSteerRight(true); } else { gVehicleInputData.setAnalogAccel(1.0f); gVehicleInputData.setAnalogSteer(1.0f); } } void startHandbrakeTurnLeftMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalSteerLeft(true); gVehicleInputData.setDigitalHandbrake(true); } else { gVehicleInputData.setAnalogSteer(-1.0f); gVehicleInputData.setAnalogHandbrake(1.0f); } } void startHandbrakeTurnRightMode() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalSteerRight(true); gVehicleInputData.setDigitalHandbrake(true); } else { gVehicleInputData.setAnalogSteer(1.0f); gVehicleInputData.setAnalogHandbrake(1.0f); } } void releaseAllControls() { if(gMimicKeyInputs) { gVehicleInputData.setDigitalAccel(false); gVehicleInputData.setDigitalSteerLeft(false); gVehicleInputData.setDigitalSteerRight(false); gVehicleInputData.setDigitalBrake(false); gVehicleInputData.setDigitalHandbrake(false); } else { gVehicleInputData.setAnalogAccel(0.0f); gVehicleInputData.setAnalogSteer(0.0f); gVehicleInputData.setAnalogBrake(0.0f); gVehicleInputData.setAnalogHandbrake(0.0f); } } void initPhysics() { gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback); PxTolerancesScale scale; scale.length = gLengthScale; scale.speed = 10.0f * gLengthScale; gPvd = PxCreatePvd(*gFoundation); PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10); gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL); gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, scale, true, gPvd); PxSceneDesc sceneDesc(gPhysics->getTolerancesScale()); sceneDesc.gravity = PxVec3(0.0f, -9.81f*gLengthScale, 0.0f); PxU32 numWorkers = 1; gDispatcher = PxDefaultCpuDispatcherCreate(numWorkers); sceneDesc.cpuDispatcher = gDispatcher; sceneDesc.filterShader = VehicleFilterShader; gScene = gPhysics->createScene(sceneDesc); PxPvdSceneClient* pvdClient = gScene->getScenePvdClient(); if(pvdClient) { pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, true); pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONTACTS, true); pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, true); } gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f); gCooking = PxCreateCooking(PX_PHYSICS_VERSION, *gFoundation, PxCookingParams(PxTolerancesScale())); ///////////////////////////////////////////// PxInitVehicleSDK(*gPhysics); PxVehicleSetBasisVectors(PxVec3(0,1,0), PxVec3(0,0,1)); PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE); //Create the batched scene queries for the suspension raycasts. gVehicleSceneQueryData = VehicleSceneQueryData::allocate(1, PX_MAX_NB_WHEELS, 1, 1, WheelSceneQueryPreFilterBlocking, NULL, gAllocator); gBatchQuery = VehicleSceneQueryData::setUpBatchedSceneQuery(0, *gVehicleSceneQueryData, gScene); //Create the friction table for each combination of tire and surface type. gFrictionPairs = createFrictionPairs(gMaterial); //Create a plane to drive on. PxFilterData groundPlaneSimFilterData(COLLISION_FLAG_GROUND, COLLISION_FLAG_GROUND_AGAINST, 0, 0); gGroundPlane = createDrivablePlane(groundPlaneSimFilterData, gMaterial, gPhysics); gScene->addActor(*gGroundPlane); //Create a vehicle that will drive on the plane. VehicleDesc vehicleDesc = initVehicleDesc(); gVehicle4W = createVehicle4W(vehicleDesc, gPhysics, gCooking); //Convert the vehicle from meters to the chosen length scale. customizeVehicleToLengthScale(gLengthScale, gVehicle4W->getRigidDynamicActor(), &gVehicle4W->mWheelsSimData, &gVehicle4W->mDriveSimData); //Convert the steer angle vs forward speed table to the chosen length scale. for(PxU32 i = 0; i < gSteerVsForwardSpeedTable.mNbDataPairs; i++) { gSteerVsForwardSpeedTable.mDataPairs[2*i +0] *= gLengthScale; } PxTransform startTransform(PxVec3(0, ((vehicleDesc.chassisDims.y*0.5f + vehicleDesc.wheelRadius + 1.0f)*gLengthScale), 0), PxQuat(PxIdentity)); gVehicle4W->getRigidDynamicActor()->setGlobalPose(startTransform); gScene->addActor(*gVehicle4W->getRigidDynamicActor()); //Set the vehicle to rest in first gear. //Set the vehicle to use auto-gears. gVehicle4W->setToRestState(); gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST); gVehicle4W->mDriveDynData.setUseAutoGears(true); gVehicleModeTimer = 0.0f; gVehicleOrderProgress = 0; startBrakeMode(); } void incrementDrivingMode(const PxF32 timestep) { gVehicleModeTimer += timestep; if(gVehicleModeTimer > gVehicleModeLifetime) { //If the mode just completed was eDRIVE_MODE_ACCEL_REVERSE then switch back to forward gears. if(eDRIVE_MODE_ACCEL_REVERSE == gDriveModeOrder[gVehicleOrderProgress]) { gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST); } //Increment to next driving mode. gVehicleModeTimer = 0.0f; gVehicleOrderProgress++; releaseAllControls(); //If we are at the end of the list of driving modes then start again. if(eDRIVE_MODE_NONE == gDriveModeOrder[gVehicleOrderProgress]) { gVehicleOrderProgress = 0; gVehicleOrderComplete = true; } //Start driving in the selected mode. DriveMode eDriveMode = gDriveModeOrder[gVehicleOrderProgress]; switch(eDriveMode) { case eDRIVE_MODE_ACCEL_FORWARDS: startAccelerateForwardsMode(); break; case eDRIVE_MODE_ACCEL_REVERSE: startAccelerateReverseMode(); break; case eDRIVE_MODE_HARD_TURN_LEFT: startTurnHardLeftMode(); break; case eDRIVE_MODE_HANDBRAKE_TURN_LEFT: startHandbrakeTurnLeftMode(); break; case eDRIVE_MODE_HARD_TURN_RIGHT: startTurnHardRightMode(); break; case eDRIVE_MODE_HANDBRAKE_TURN_RIGHT: startHandbrakeTurnRightMode(); break; case eDRIVE_MODE_BRAKE: startBrakeMode(); break; case eDRIVE_MODE_NONE: break; }; //If the mode about to start is eDRIVE_MODE_ACCEL_REVERSE then switch to reverse gears. if(eDRIVE_MODE_ACCEL_REVERSE == gDriveModeOrder[gVehicleOrderProgress]) { gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eREVERSE); } } } void stepPhysics() { const PxF32 timestep = 1.0f/60.0f; //Cycle through the driving modes to demonstrate how to accelerate/reverse/brake/turn etc. incrementDrivingMode(timestep); //Update the control inputs for the vehicle. if(gMimicKeyInputs) { PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W); } else { PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(gPadSmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W); } //Raycasts. PxVehicleWheels* vehicles[1] = {gVehicle4W}; PxRaycastQueryResult* raycastResults = gVehicleSceneQueryData->getRaycastQueryResultBuffer(0); const PxU32 raycastResultsSize = gVehicleSceneQueryData->getQueryResultBufferSize(); PxVehicleSuspensionRaycasts(gBatchQuery, 1, vehicles, raycastResultsSize, raycastResults); //Vehicle update. const PxVec3 grav = gScene->getGravity(); PxWheelQueryResult wheelQueryResults[PX_MAX_NB_WHEELS]; PxVehicleWheelQueryResult vehicleQueryResults[1] = {{wheelQueryResults, gVehicle4W->mWheelsSimData.getNbWheels()}}; PxVehicleUpdates(timestep, grav, *gFrictionPairs, 1, vehicles, vehicleQueryResults); //Work out if the vehicle is in the air. gIsVehicleInAir = gVehicle4W->getRigidDynamicActor()->isSleeping() ? false : PxVehicleIsInAir(vehicleQueryResults[0]); //Scene update. gScene->simulate(timestep); gScene->fetchResults(true); } void cleanupPhysics() { gVehicle4W->getRigidDynamicActor()->release(); gVehicle4W->free(); PX_RELEASE(gGroundPlane); PX_RELEASE(gBatchQuery); gVehicleSceneQueryData->free(gAllocator); PX_RELEASE(gFrictionPairs); PxCloseVehicleSDK(); PX_RELEASE(gMaterial); PX_RELEASE(gCooking); PX_RELEASE(gScene); PX_RELEASE(gDispatcher); PX_RELEASE(gPhysics); if(gPvd) { PxPvdTransport* transport = gPvd->getTransport(); gPvd->release(); gPvd = NULL; PX_RELEASE(transport); } PX_RELEASE(gFoundation); printf("SnippetVehicleScale done.\n"); } void keyPress(unsigned char key, const PxTransform& camera) { PX_UNUSED(camera); PX_UNUSED(key); } int snippetMain(int, const char*const*) { #ifdef RENDER_SNIPPET extern void renderLoop(); renderLoop(); #else initPhysics(); while(!gVehicleOrderComplete) { stepPhysics(); } cleanupPhysics(); #endif return 0; }