// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef INPUT_BUFFER_H #define INPUT_BUFFER_H #include "SamplePreprocessor.h" #include "SampleAllocator.h" #include "SampleUserInput.h" #include "foundation/PxAssert.h" #include "PsIntrinsics.h" class PhysXSampleApplication; template class RingBuffer { public: RingBuffer() : mReadCount(0) , mWriteCount(0) { // SIZE has to be power of two #if PX_VC PX_COMPILE_TIME_ASSERT(SIZE > 0); PX_COMPILE_TIME_ASSERT((SIZE&(SIZE-1)) == 0); #else PX_ASSERT(SIZE > 0); PX_ASSERT((SIZE&(SIZE-1)) == 0); #endif } PX_FORCE_INLINE bool isEmpty() const { return mReadCount==mWriteCount; } PX_FORCE_INLINE bool isFull() const { return isFull(mReadCount, mWriteCount); } PX_FORCE_INLINE PxU32 size() const { return size(mReadCount, mWriteCount); } PX_FORCE_INLINE PxU32 capacity() const { return SIZE; } // clear is only save if called from reader thread! PX_FORCE_INLINE void clear() { mReadCount=mWriteCount; } PX_FORCE_INLINE const T& back() const { PX_ASSERT(!isEmpty()); return mRing[mReadCount&moduloMask]; } PX_FORCE_INLINE T& front() { return mRing[mWriteCount&moduloMask]; } PX_FORCE_INLINE void incFront(PxU32 inc) { PX_ASSERT(SIZE-size() >= inc); mWriteCount+=inc; } PX_FORCE_INLINE void incBack(PxU32 inc) { PX_ASSERT(size() >= inc); mReadCount+=inc; } PX_FORCE_INLINE bool pushFront(const T& e) { if(!isFull()) { mRing[mWriteCount&moduloMask] = e; Ps::memoryBarrier(); mWriteCount++; return true; } else return false; } PX_FORCE_INLINE bool popBack(T& e) { if(!isEmpty()) { e = mRing[mReadCount&moduloMask]; mReadCount++; return true; } else return false; } private: PX_FORCE_INLINE static PxU32 moduloDistance(PxI32 r, PxI32 w) { return PxU32((w-r)&moduloMask); } PX_FORCE_INLINE static bool isFull(PxI32 r, PxI32 w) { return r!=w && moduloDistance(r,w)==0; } PX_FORCE_INLINE static PxU32 size(PxI32 r, PxI32 w) { return isFull(r, w) ? SIZE : moduloDistance(r, w); } private: static const PxU32 moduloMask = SIZE-1; T mRing[SIZE]; volatile PxI32 mReadCount; volatile PxI32 mWriteCount; }; class InputEventBuffer: public SampleFramework::InputEventListener, public SampleAllocateable { public: InputEventBuffer(PhysXSampleApplication& p); virtual ~InputEventBuffer(); virtual void onKeyDownEx(SampleFramework::SampleUserInput::KeyCode keyCode, PxU32 wParam); virtual void onAnalogInputEvent(const SampleFramework::InputEvent& , float val); virtual void onDigitalInputEvent(const SampleFramework::InputEvent& , bool val); virtual void onPointerInputEvent(const SampleFramework::InputEvent&, PxU32 x, PxU32 y, PxReal dx, PxReal dy, bool val); void clear(); void flush(); private: PX_FORCE_INLINE void checkResetLastInput() { if(mResetInputCacheReq!=mResetInputCacheAck) { mLastKeyDownEx = NULL; mLastDigitalInput = NULL; mLastAnalogInput = NULL; mLastPointerInput = NULL; mResetInputCacheAck++; PX_ASSERT(mResetInputCacheReq==mResetInputCacheAck); } } struct EventType { virtual ~EventType() {} virtual void report(PhysXSampleApplication& app) const { } }; struct KeyDownEx: public EventType { virtual void report(PhysXSampleApplication& app) const; bool isEqual(SampleFramework::SampleUserInput::KeyCode _keyCode, PxU32 _wParam) { return (_keyCode == keyCode) && (_wParam == wParam); } SampleFramework::SampleUserInput::KeyCode keyCode; PxU32 wParam; }; struct AnalogInput: public EventType { virtual void report(PhysXSampleApplication& app) const; bool isEqual(SampleFramework::InputEvent _e, float _val) { return (_e.m_Id == e.m_Id) && (_e.m_Analog == e.m_Analog) && (_e.m_Sensitivity == e.m_Sensitivity) && (_val == val); } SampleFramework::InputEvent e; float val; }; struct DigitalInput: public EventType { virtual void report(PhysXSampleApplication& app) const; bool isEqual(SampleFramework::InputEvent _e, bool _val) { return (_e.m_Id == e.m_Id) && (_e.m_Analog == e.m_Analog) && (_e.m_Sensitivity == e.m_Sensitivity) && (_val == val); } SampleFramework::InputEvent e; bool val; }; struct PointerInput: public EventType { virtual void report(PhysXSampleApplication& app) const; bool isEqual(SampleFramework::InputEvent _e, PxU32 _x, PxU32 _y, PxReal _dx, PxReal _dy, bool _val) { return (_e.m_Id == e.m_Id) && (_e.m_Analog == e.m_Analog) && (_e.m_Sensitivity == e.m_Sensitivity) && (_x == x) && (_y == y) && (_dx == dx) && (_dy == dy) && (_val == val); } SampleFramework::InputEvent e; PxU32 x; PxU32 y; PxReal dx; PxReal dy; bool val; }; struct EventsUnion { template PX_CUDA_CALLABLE PX_FORCE_INLINE Event& get() { return reinterpret_cast(events); } template PX_CUDA_CALLABLE PX_FORCE_INLINE const Event& get() const { return reinterpret_cast(events); } union { PxU8 eventType[sizeof(EventType)]; PxU8 keyDownEx[sizeof(KeyDownEx)]; PxU8 analogInput[sizeof(AnalogInput)]; PxU8 digitalInput[sizeof(DigitalInput)]; PxU8 pointerInput[sizeof(PointerInput)]; } events; }; static const PxU32 MAX_EVENTS = 64; static const PxU32 MAX_MOUSE_EVENTS = 48; static const PxU32 MAX_ANALOG_EVENTS = 48; RingBuffer mRingBuffer; volatile PxU32 mResetInputCacheReq; volatile PxU32 mResetInputCacheAck; KeyDownEx* mLastKeyDownEx; DigitalInput* mLastDigitalInput; AnalogInput* mLastAnalogInput; PointerInput* mLastPointerInput; PhysXSampleApplication& mApp; bool mClearBuffer; }; #endif