// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2018 NVIDIA Corporation. All rights reserved. #include "HDRHelper.h" #include "foundation/PxMat44.h" namespace { PxMat44 PerspectiveProjectionMatrix(float fovy,float x,float y,float n,float f) { float PPM[16]; float coty = 1.0f / tan(fovy * physx::PxPi / 360.0f); float aspect = x / (y > 0.0f ? y : 1.0f); PPM[0] = coty / aspect; PPM[1] = 0.0f; PPM[2] = 0.0f; PPM[3] = 0.0f; PPM[4] = 0.0f; PPM[5] = coty; PPM[6] = 0.0f; PPM[7] = 0.0f; PPM[8] = 0.0f; PPM[9] = 0.0f; PPM[10] = (n + f) / (n - f); PPM[11] = -1.0f; PPM[12] = 0.0f; PPM[13] = 0.0f; PPM[14] = 2.0f * n * f / (n - f); PPM[15] = 0.0f; return PxMat44(PPM); } } const char *HDRToneMappingVS = STRINGIFY( void main(void) { gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = gl_Vertex * 2.0 - 1.0; } ); const char *HDRBlurHFS = STRINGIFY( uniform sampler2D colorTex; uniform float sx; void main (void) { vec3 bloom = vec3(0.0, 0.0, 0.0); const float hdrScale = 1.5; const int kernelSize = 10; const float invScale = 1.0 / (hdrScale * float(kernelSize)); for (int x = -kernelSize; x <= kernelSize; x++) { float s = gl_TexCoord[0].s + x * sx; float t = gl_TexCoord[0].t; vec3 color = texture2D(colorTex, vec2(s,t)).rgb; float luminance = dot(color, vec3(0.2125, 0.7154, 0.0721)); if (luminance > 1.0) { bloom += color * ((kernelSize+1) - abs(float(x))); } } gl_FragColor = vec4(bloom * invScale, 1.0); } ); const char *HDRBlurVFS = STRINGIFY( uniform sampler2D colorTex; uniform sampler2D blurTex; uniform float sy; void main (void) { const float hdrScale = 1.5; const int kernelSize = 10; const float invScale = 1.0 / (hdrScale * float(kernelSize) * 100.0); vec3 colorP = texture2D(colorTex, gl_TexCoord[0]).rgb; vec3 bloom = vec3(0.0, 0.0, 0.0); for (int y = -kernelSize; y <= kernelSize; y++) { float s = gl_TexCoord[0].s; float t = gl_TexCoord[0].t + y * sy; vec3 color = texture2D(blurTex, vec2(s,t)).rgb; float luminance = dot(color, vec3(0.2125, 0.7154, 0.0721)); if (luminance > 1.0) { bloom += color * ((kernelSize+1) - abs(float(y))); } } vec3 hdrColor = invScale * bloom + colorP; vec3 toneMappedColor = 2.0 * hdrColor / (hdrColor + vec3(1.0)); gl_FragColor = vec4(toneMappedColor, 1.0); } ); const char *HDRDepthOfFieldFS = STRINGIFY( uniform sampler2D colorTex; uniform sampler2D depthTex; uniform float sx; uniform float sy; void main(void) { const float depthEnd = 0.993; const float depthSize = 0.01; vec3 colorP = texture2D(colorTex, gl_TexCoord[0]).rgb; float depth = texture2D(depthTex, gl_TexCoord[0].st).r; if ((depth - depthEnd) < depthSize) { const int depthKernelSize = 5; vec3 colorSum = vec3(0.0); float cnt = 0.0; for (int x = -depthKernelSize; x <= depthKernelSize; x++) for (int y = -depthKernelSize; y <= depthKernelSize; y++) { float s = gl_TexCoord[0].s + x * sy; float t = gl_TexCoord[0].t + y * sy; float scalex = ((depthKernelSize + 1) - abs(float(x))) / depthKernelSize; float scaley = ((depthKernelSize + 1) - abs(float(y))) / depthKernelSize; float scale = scalex * scaley; vec3 color = texture2D(colorTex, vec2(s, t)).rgb; colorSum += scale * color; cnt += scale; } colorSum /= cnt; float depthScale = pow(max(0.0f, min(1.0, (abs(depth - depthEnd)) / depthSize)), 1.5); colorP = depthScale * colorSum + (1.0 - depthScale) * colorP; } gl_FragColor = vec4(colorP, 1.0); } ); HDRHelper::HDRHelper(float fov,float padding,float zNear,float zFar, const char* resourcePath, float scale) : fov(fov),padding(padding),zNear(zNear),zFar(zFar), scale(scale) { mShaderBloomH.loadShaderCode(HDRToneMappingVS, HDRBlurHFS); mShaderBloomV.loadShaderCode(HDRToneMappingVS, HDRBlurVFS); mShaderDOF.loadShaderCode(HDRToneMappingVS, HDRDepthOfFieldFS); glGenTextures(1,&mHDRColorTex); glGenTextures(1,&mHDRDepthTex); glGenTextures(1,&mHDRBlurTex); glGenTextures(1,&mHDRBloomTex); glGenFramebuffers(1,&mHDRFbo); glBindFramebuffer(GL_FRAMEBUFFER, mHDRFbo); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,mHDRColorTex, 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); glReadBuffer(GL_COLOR_ATTACHMENT0); glGenFramebuffers(1,&mHDRBlurFbo); glBindFramebuffer(GL_FRAMEBUFFER, mHDRBlurFbo); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,mHDRBlurTex, 0); glDrawBuffer(GL_COLOR_ATTACHMENT0); glReadBuffer(GL_COLOR_ATTACHMENT0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("Frame buffer status %d\n\n\n", // (status == GL_FRAMEBUFFER_COMPLETE) ? 1 : 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); } void HDRHelper::Resize(int w,int h) { realWidth = w; realHeight = h; Width = w*scale; Height = h*scale; fovPad = 2.0f*atan(tan(fov*0.5f*physx::PxPi/180.0f)*(1.0f+padding))*180.0f/physx::PxPi; glViewport(0,0,w,h); // allocate HDR color buffer glBindFramebuffer(GL_FRAMEBUFFER, mHDRFbo); glBindTexture(GL_TEXTURE_2D,mHDRColorTex); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP); glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA16F,w,h,0,GL_RGBA,GL_FLOAT,NULL); glBindTexture(GL_TEXTURE_2D,mHDRDepthTex); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP); glTexImage2D(GL_TEXTURE_2D,0,GL_DEPTH_COMPONENT24,w,h,0,GL_DEPTH_COMPONENT,GL_FLOAT,NULL); // allocate HDR color buffer for blur operations glBindFramebuffer(GL_FRAMEBUFFER, mHDRBlurFbo); glBindTexture(GL_TEXTURE_2D,mHDRBlurTex); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP); glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA16F,w,h,0,GL_RGBA,GL_FLOAT,NULL); glBindTexture(GL_TEXTURE_2D,mHDRBloomTex); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP); glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA16F,w,h,0,GL_RGBA,GL_FLOAT,NULL); // set program values glUseProgram(mShaderBloomH); glUniform1f(glGetUniformLocation(mShaderBloomH,"sx"),1.0f / (float)w); glUseProgram(mShaderBloomV); glUniform1f(glGetUniformLocation(mShaderBloomV,"sy"),1.0f / (float)h); glUseProgram(mShaderDOF); glUniform1f(glGetUniformLocation(mShaderDOF,"sx"),1.0f / (float)w); glUniform1f(glGetUniformLocation(mShaderDOF,"sy"),1.0f / (float)h); glUseProgram(0); glBindFramebuffer(GL_FRAMEBUFFER, 0); } void HDRHelper::Destroy() { mShaderBloomH.deleteShaders(); mShaderBloomV.deleteShaders(); glDeleteTextures(1,&mHDRColorTex); glDeleteTextures(1,&mHDRDepthTex); glDeleteTextures(1,&mHDRBlurTex); glDeleteTextures(1,&mHDRBloomTex); glDeleteFramebuffers(1,&mHDRFbo); glDeleteFramebuffers(1,&mHDRBlurFbo); } void HDRHelper::beginHDR(bool useOwnFbo) { if (useOwnFbo) { glBindFramebuffer(GL_FRAMEBUFFER, mHDRFbo); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,mHDRColorTex, 0); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D,mHDRDepthTex,0); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } } void HDRHelper::endHDR(bool useOwnFbo) { if (useOwnFbo) glBindFramebuffer(GL_FRAMEBUFFER, 0); } void drawQuads(float s = 1.0f) { glBegin(GL_QUADS); glTexCoord2f(0.0f, 0.0f); glVertex2f(0.0f,0.0f); glTexCoord2f(1.0f, 0.0f); glVertex2f(s,0.0f); glTexCoord2f(1.0f, 1.0f); glVertex2f(s,s); glTexCoord2f(0.0f, 1.0f); glVertex2f(0.0f,s); glEnd(); } void HDRHelper::DoHDR(GLuint oldFBO, bool useDOF) { PxMat44 Projection = PerspectiveProjectionMatrix(fov,Width,Height,zNear,zFar); // render stored HDR fbo onto blur fbo, first with horizontal blur glBindFramebuffer(GL_FRAMEBUFFER, mHDRBlurFbo); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,mHDRBlurTex,0); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D,0,0); glViewport(0,0,realWidth,realHeight); glMatrixMode(GL_PROJECTION); glLoadMatrixf(&Projection.column0.x); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, mHDRColorTex); glUseProgram(mShaderBloomH); glUniform1f(glGetUniformLocation(mShaderBloomH, "sx"), 1.0f / (float)realWidth); glUniform1i(glGetUniformLocation(mShaderBloomH,"colorTex"),0); drawQuads(); glUseProgram(0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,0); // now apply vertical blur for the bloom if (useDOF) { glFramebufferTexture2D(GL_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_2D,mHDRBloomTex,0); glFramebufferTexture2D(GL_FRAMEBUFFER,GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D,0,0); } else glBindFramebuffer(GL_FRAMEBUFFER,oldFBO); glViewport(0,0,realWidth,realHeight); glMatrixMode(GL_PROJECTION); glLoadMatrixf(&Projection.column0.x); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,mHDRColorTex); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D,mHDRBlurTex); glUseProgram(mShaderBloomV); glUniform1f(glGetUniformLocation(mShaderBloomV, "sy"), 1.0f / (float)realHeight); glUniform1i(glGetUniformLocation(mShaderBloomV,"colorTex"),0); glUniform1i(glGetUniformLocation(mShaderBloomV,"blurTex"),1); drawQuads(); glUseProgram(0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D,0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,0); // now render the final image onto supplied fbo, apply DOF if (!useDOF) return; glBindFramebuffer(GL_FRAMEBUFFER,oldFBO); glViewport(0,0,realWidth,realHeight); glMatrixMode(GL_PROJECTION); glLoadMatrixf(&Projection.column0.x); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,mHDRBloomTex); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D,mHDRDepthTex); glUseProgram(mShaderDOF); glUniform1f(glGetUniformLocation(mShaderDOF, "sx"), 1.0f / (float)realWidth); glUniform1f(glGetUniformLocation(mShaderDOF, "sy"), 1.0f / (float)realHeight); glUniform1i(glGetUniformLocation(mShaderDOF,"colorTex"),0); glUniform1i(glGetUniformLocation(mShaderDOF,"depthTex"),1); drawQuads(); glUseProgram(0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D,0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,0); }