// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2018 NVIDIA Corporation. All rights reserved. #ifndef PLANE_H #define PLANE_H #include "Vec3.H" // Singe / VecReal Precision Vec 3 // Matthias Mueller // derived from Plane namespace M { class Plane { public: Plane() {} Plane(VecReal nx, VecReal ny, VecReal nz, VecReal distance) : n(nx, ny, nz) , d(distance) {} Plane(const Vec3& normal, VecReal distance) : n(normal) , d(distance) {} Plane(const Vec3& point, const Vec3& normal) : n(normal) , d(-point.dot(n)) // p satisfies normal.dot(p) + d = 0 { } Plane(const Vec3& p0, const Vec3& p1, const Vec3& p2) { n = (p1 - p0).cross(p2 - p0).getNormalized(); d = -p0.dot(n); } VecReal distance(const Vec3& p) const { return p.dot(n) + d; } bool contains(const Vec3& p) const { return vecAbs(distance(p)) < (1.0e-7f); } Vec3 project(const Vec3 & p) const { return p - n * distance(p); } Vec3 pointInPlane() const { return -n*d; } void normalize() { VecReal denom = 1.0f / n.magnitude(); n *= denom; d *= denom; } Vec3 n; //!< The normal to the plane VecReal d; //!< The distance from the origin }; } #endif