Files
PhysX4.1/physx/snippets/snippetstepper/SnippetStepper.cpp
2025-11-28 23:13:44 +05:30

237 lines
8.3 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
// ****************************************************************************
// This snippet illustrates kinematic actor updates in a substepped simulation.
//
// It uses chained continuation tasks that call fetchResults and run simulation steps.
// The scene consists of a kinematic platform interacting with a dynamic
// sphere. The kinematic actor's target pose is updated before every substep.
// ****************************************************************************
#include <new>
#include "PxPhysicsAPI.h"
#include "../snippetcommon/SnippetPrint.h"
#include "../snippetcommon/SnippetPVD.h"
#include "../snippetutils/SnippetUtils.h"
using namespace physx;
using namespace SnippetUtils;
// The usual PhysX resources.
PxDefaultAllocator gAllocator;
PxDefaultErrorCallback gErrorCallback;
PxFoundation* gFoundation = NULL;
PxPhysics* gPhysics = NULL;
PxMaterial* gMaterial = NULL;
PxDefaultCpuDispatcher* gDispatcher = NULL;
PxScene* gScene = NULL;
PxRigidDynamic* gKinematic = NULL;
// A very simple substepping policy: just take 2 60Hz substeps per step.
static const PxReal SUBSTEP_LENGTH = 1.0f/60.0f;
static const PxU32 NUM_STEPS = 1000;
static const PxI32 NUM_SUBSTEPS = 2;
PxPvd* gPvd = NULL;
// Context for keeping track of the stepper state.
struct StepContext
{
class SubstepCompletionTask* taskPool;
Sync* completionSync;
PxI32 nbSubstepsFinished;
volatile PxI32 nbTasksDestroyed;
} gStepContext;
// Completion task for running a substep.
// The following sequencing is guaranteed:
// * the section of the run() method up to the removeReference() in startNextSubstep() will execute prior
// to the run() method of the task submitted by startNextSubstep()
// * the run() method of a task will run before its release() method
//
// Any work done by a task after releasing the next task (via removeReference()) could end up running in
// parallel with that task, if simulate() completes sufficiently quickly or there is a context switch. In order
// to prevent races, it is therefore recommended that a completion task do no work after releasing the next.
class SubstepCompletionTask : public PxLightCpuTask
{
public:
SubstepCompletionTask()
{
mTm = gScene->getTaskManager();
}
void run()
{
void startNextSubstep();
gScene->fetchResults(true);
if(++gStepContext.nbSubstepsFinished < NUM_SUBSTEPS)
startNextSubstep();
}
void release()
{
this->~SubstepCompletionTask();
// If we're done with all the substeps , synchronize with the main thread. In a real application
// we would most likely run dependent tasks instead.
// We can only signal completion once all substepping resources are cleaned up.
// Release() calls may run concurrently or out of order, so we use an atomic counter.
if(atomicIncrement(&gStepContext.nbTasksDestroyed) == NUM_SUBSTEPS)
syncSet(gStepContext.completionSync);
}
const char* getName() const { return "Substep Completion Task"; }
};
// Update the sim inputs and start the next PhysX substep.
void startNextSubstep()
{
// Compute new target pose for the kinematic at the end of the substep.
static PxReal sTotalSeconds = 0.0f;
sTotalSeconds += SUBSTEP_LENGTH;
const PxReal period = 4.0f;
const PxReal amplitude = 10.0f;
const PxReal angVel = PxTwoPi/period;
PxReal yPos = PxSin(angVel * sTotalSeconds) * amplitude;
gKinematic->setKinematicTarget(PxTransform(0.0f, yPos, 0.0f));
// Create a completion task and set its reference count to 1. This way we can safely submit it to simulate()
// and, even if we get context-switched and simulate() completes before we get back, the task's run()
// method will not execute until we're ready.
SubstepCompletionTask* nextCompletion = new (gStepContext.taskPool+gStepContext.nbSubstepsFinished) SubstepCompletionTask();
nextCompletion->addReference();
// Kick off the sim with the new completion task. Once this call returns, worker threads will update the PhysX
// state in parallel with the rest of this function.
gScene->simulate(SUBSTEP_LENGTH, nextCompletion);
// We can do things here that can run in parallel with the simulation, but must happen before the next task's
// run method executes. In this snippet, there's nothing to do...
// Finally, remove the reference that prevents the next completion task running.
nextCompletion->removeReference();
}
void runPhysics()
{
// Initialize the substepping context.
syncReset(gStepContext.completionSync);
gStepContext.nbSubstepsFinished = 0;
gStepContext.nbTasksDestroyed = 0;
// Start the first substep, then wait for the last one to finish.
startNextSubstep();
syncWait(gStepContext.completionSync);
}
void initPhysics()
{
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback);
gPvd = PxCreatePvd(*gFoundation);
PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10);
gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL);
gPhysics = PxCreateBasePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(), true, gPvd);
gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.2f);
PxSceneDesc desc(gPhysics->getTolerancesScale());
desc.filterShader = PxDefaultSimulationFilterShader;
desc.cpuDispatcher = gDispatcher = PxDefaultCpuDispatcherCreate(2);
desc.gravity = PxVec3(0.0f, -9.81f, 0.0f);
gScene = gPhysics->createScene(desc);
PxPvdSceneClient* pvdClient = gScene->getScenePvdClient();
if(pvdClient)
{
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONTACTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, true);
}
gKinematic = PxCreateKinematic(*gPhysics, PxTransform(PxIdentity), PxBoxGeometry(5.0f, 1.0f, 5.0f), *gMaterial, 1.0f);
gScene->addActor(*gKinematic);
PxRigidDynamic* sphere = PxCreateDynamic(*gPhysics, PxTransform(0.0f, 5.0f, 0.0f), PxSphereGeometry(1.0f), *gMaterial, 1.0f);
gScene->addActor(*sphere);
}
void cleanupPhysics()
{
PX_RELEASE(gDispatcher);
PX_RELEASE(gPhysics);
if(gPvd)
{
PxPvdTransport* transport = gPvd->getTransport();
gPvd->release(); gPvd = NULL;
PX_RELEASE(transport);
}
PX_RELEASE(gFoundation);
}
int snippetMain(int, const char*const*)
{
initPhysics();
// Storage and synchronization for substepping.
gStepContext.taskPool = reinterpret_cast<SubstepCompletionTask*>(malloc(NUM_SUBSTEPS * sizeof(SubstepCompletionTask)));
gStepContext.completionSync = syncCreate();
for(PxU32 i=0; i<NUM_STEPS; i++)
runPhysics();
syncRelease(gStepContext.completionSync);
free(gStepContext.taskPool);
cleanupPhysics();
printf("SnippetStepper done.\n");
return 0;
}