Files
PhysX4.1/physx/snippets/snippetvehicle4w/SnippetVehicle4W.cpp
2025-11-28 23:13:44 +05:30

532 lines
16 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
// ****************************************************************************
// This snippet illustrates simple use of PxVehicleDrive4W.
//
// It creates a vehicle on a plane and then controls the vehicle so that it performs a
// number of choreographed manoeuvres such as accelerate, reverse, brake, handbrake, and turn.
// It is a good idea to record and playback with pvd (PhysX Visual Debugger).
// ****************************************************************************
#include <ctype.h>
#include "PxPhysicsAPI.h"
#include "vehicle/PxVehicleUtil.h"
#include "../snippetvehiclecommon/SnippetVehicleSceneQuery.h"
#include "../snippetvehiclecommon/SnippetVehicleFilterShader.h"
#include "../snippetvehiclecommon/SnippetVehicleTireFriction.h"
#include "../snippetvehiclecommon/SnippetVehicleCreate.h"
#include "../snippetcommon/SnippetPrint.h"
#include "../snippetcommon/SnippetPVD.h"
#include "../snippetutils/SnippetUtils.h"
using namespace physx;
using namespace snippetvehicle;
PxDefaultAllocator gAllocator;
PxDefaultErrorCallback gErrorCallback;
PxFoundation* gFoundation = NULL;
PxPhysics* gPhysics = NULL;
PxDefaultCpuDispatcher* gDispatcher = NULL;
PxScene* gScene = NULL;
PxCooking* gCooking = NULL;
PxMaterial* gMaterial = NULL;
PxPvd* gPvd = NULL;
VehicleSceneQueryData* gVehicleSceneQueryData = NULL;
PxBatchQuery* gBatchQuery = NULL;
PxVehicleDrivableSurfaceToTireFrictionPairs* gFrictionPairs = NULL;
PxRigidStatic* gGroundPlane = NULL;
PxVehicleDrive4W* gVehicle4W = NULL;
bool gIsVehicleInAir = true;
PxF32 gSteerVsForwardSpeedData[2*8]=
{
0.0f, 0.75f,
5.0f, 0.75f,
30.0f, 0.125f,
120.0f, 0.1f,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32,
PX_MAX_F32, PX_MAX_F32
};
PxFixedSizeLookupTable<8> gSteerVsForwardSpeedTable(gSteerVsForwardSpeedData,4);
PxVehicleKeySmoothingData gKeySmoothingData=
{
{
6.0f, //rise rate eANALOG_INPUT_ACCEL
6.0f, //rise rate eANALOG_INPUT_BRAKE
6.0f, //rise rate eANALOG_INPUT_HANDBRAKE
2.5f, //rise rate eANALOG_INPUT_STEER_LEFT
2.5f, //rise rate eANALOG_INPUT_STEER_RIGHT
},
{
10.0f, //fall rate eANALOG_INPUT_ACCEL
10.0f, //fall rate eANALOG_INPUT_BRAKE
10.0f, //fall rate eANALOG_INPUT_HANDBRAKE
5.0f, //fall rate eANALOG_INPUT_STEER_LEFT
5.0f //fall rate eANALOG_INPUT_STEER_RIGHT
}
};
PxVehiclePadSmoothingData gPadSmoothingData=
{
{
6.0f, //rise rate eANALOG_INPUT_ACCEL
6.0f, //rise rate eANALOG_INPUT_BRAKE
6.0f, //rise rate eANALOG_INPUT_HANDBRAKE
2.5f, //rise rate eANALOG_INPUT_STEER_LEFT
2.5f, //rise rate eANALOG_INPUT_STEER_RIGHT
},
{
10.0f, //fall rate eANALOG_INPUT_ACCEL
10.0f, //fall rate eANALOG_INPUT_BRAKE
10.0f, //fall rate eANALOG_INPUT_HANDBRAKE
5.0f, //fall rate eANALOG_INPUT_STEER_LEFT
5.0f //fall rate eANALOG_INPUT_STEER_RIGHT
}
};
PxVehicleDrive4WRawInputData gVehicleInputData;
enum DriveMode
{
eDRIVE_MODE_ACCEL_FORWARDS=0,
eDRIVE_MODE_ACCEL_REVERSE,
eDRIVE_MODE_HARD_TURN_LEFT,
eDRIVE_MODE_HANDBRAKE_TURN_LEFT,
eDRIVE_MODE_HARD_TURN_RIGHT,
eDRIVE_MODE_HANDBRAKE_TURN_RIGHT,
eDRIVE_MODE_BRAKE,
eDRIVE_MODE_NONE
};
DriveMode gDriveModeOrder[] =
{
eDRIVE_MODE_BRAKE,
eDRIVE_MODE_ACCEL_FORWARDS,
eDRIVE_MODE_BRAKE,
eDRIVE_MODE_ACCEL_REVERSE,
eDRIVE_MODE_BRAKE,
eDRIVE_MODE_HARD_TURN_LEFT,
eDRIVE_MODE_BRAKE,
eDRIVE_MODE_HARD_TURN_RIGHT,
eDRIVE_MODE_ACCEL_FORWARDS,
eDRIVE_MODE_HANDBRAKE_TURN_LEFT,
eDRIVE_MODE_ACCEL_FORWARDS,
eDRIVE_MODE_HANDBRAKE_TURN_RIGHT,
eDRIVE_MODE_NONE
};
PxF32 gVehicleModeLifetime = 4.0f;
PxF32 gVehicleModeTimer = 0.0f;
PxU32 gVehicleOrderProgress = 0;
bool gVehicleOrderComplete = false;
bool gMimicKeyInputs = false;
VehicleDesc initVehicleDesc()
{
//Set up the chassis mass, dimensions, moment of inertia, and center of mass offset.
//The moment of inertia is just the moment of inertia of a cuboid but modified for easier steering.
//Center of mass offset is 0.65m above the base of the chassis and 0.25m towards the front.
const PxF32 chassisMass = 1500.0f;
const PxVec3 chassisDims(2.5f,2.0f,5.0f);
const PxVec3 chassisMOI
((chassisDims.y*chassisDims.y + chassisDims.z*chassisDims.z)*chassisMass/12.0f,
(chassisDims.x*chassisDims.x + chassisDims.z*chassisDims.z)*0.8f*chassisMass/12.0f,
(chassisDims.x*chassisDims.x + chassisDims.y*chassisDims.y)*chassisMass/12.0f);
const PxVec3 chassisCMOffset(0.0f, -chassisDims.y*0.5f + 0.65f, 0.25f);
//Set up the wheel mass, radius, width, moment of inertia, and number of wheels.
//Moment of inertia is just the moment of inertia of a cylinder.
const PxF32 wheelMass = 20.0f;
const PxF32 wheelRadius = 0.5f;
const PxF32 wheelWidth = 0.4f;
const PxF32 wheelMOI = 0.5f*wheelMass*wheelRadius*wheelRadius;
const PxU32 nbWheels = 6;
VehicleDesc vehicleDesc;
vehicleDesc.chassisMass = chassisMass;
vehicleDesc.chassisDims = chassisDims;
vehicleDesc.chassisMOI = chassisMOI;
vehicleDesc.chassisCMOffset = chassisCMOffset;
vehicleDesc.chassisMaterial = gMaterial;
vehicleDesc.chassisSimFilterData = PxFilterData(COLLISION_FLAG_CHASSIS, COLLISION_FLAG_CHASSIS_AGAINST, 0, 0);
vehicleDesc.wheelMass = wheelMass;
vehicleDesc.wheelRadius = wheelRadius;
vehicleDesc.wheelWidth = wheelWidth;
vehicleDesc.wheelMOI = wheelMOI;
vehicleDesc.numWheels = nbWheels;
vehicleDesc.wheelMaterial = gMaterial;
vehicleDesc.chassisSimFilterData = PxFilterData(COLLISION_FLAG_WHEEL, COLLISION_FLAG_WHEEL_AGAINST, 0, 0);
return vehicleDesc;
}
void startAccelerateForwardsMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalAccel(true);
}
else
{
gVehicleInputData.setAnalogAccel(1.0f);
}
}
void startAccelerateReverseMode()
{
gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eREVERSE);
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalAccel(true);
}
else
{
gVehicleInputData.setAnalogAccel(1.0f);
}
}
void startBrakeMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalBrake(true);
}
else
{
gVehicleInputData.setAnalogBrake(1.0f);
}
}
void startTurnHardLeftMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalAccel(true);
gVehicleInputData.setDigitalSteerLeft(true);
}
else
{
gVehicleInputData.setAnalogAccel(true);
gVehicleInputData.setAnalogSteer(-1.0f);
}
}
void startTurnHardRightMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalAccel(true);
gVehicleInputData.setDigitalSteerRight(true);
}
else
{
gVehicleInputData.setAnalogAccel(1.0f);
gVehicleInputData.setAnalogSteer(1.0f);
}
}
void startHandbrakeTurnLeftMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalSteerLeft(true);
gVehicleInputData.setDigitalHandbrake(true);
}
else
{
gVehicleInputData.setAnalogSteer(-1.0f);
gVehicleInputData.setAnalogHandbrake(1.0f);
}
}
void startHandbrakeTurnRightMode()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalSteerRight(true);
gVehicleInputData.setDigitalHandbrake(true);
}
else
{
gVehicleInputData.setAnalogSteer(1.0f);
gVehicleInputData.setAnalogHandbrake(1.0f);
}
}
void releaseAllControls()
{
if(gMimicKeyInputs)
{
gVehicleInputData.setDigitalAccel(false);
gVehicleInputData.setDigitalSteerLeft(false);
gVehicleInputData.setDigitalSteerRight(false);
gVehicleInputData.setDigitalBrake(false);
gVehicleInputData.setDigitalHandbrake(false);
}
else
{
gVehicleInputData.setAnalogAccel(0.0f);
gVehicleInputData.setAnalogSteer(0.0f);
gVehicleInputData.setAnalogBrake(0.0f);
gVehicleInputData.setAnalogHandbrake(0.0f);
}
}
void initPhysics()
{
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator, gErrorCallback);
gPvd = PxCreatePvd(*gFoundation);
PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 5425, 10);
gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL);
gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale(), true, gPvd);
PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());
sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);
PxU32 numWorkers = 1;
gDispatcher = PxDefaultCpuDispatcherCreate(numWorkers);
sceneDesc.cpuDispatcher = gDispatcher;
sceneDesc.filterShader = VehicleFilterShader;
gScene = gPhysics->createScene(sceneDesc);
PxPvdSceneClient* pvdClient = gScene->getScenePvdClient();
if(pvdClient)
{
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_CONTACTS, true);
pvdClient->setScenePvdFlag(PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, true);
}
gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f);
gCooking = PxCreateCooking(PX_PHYSICS_VERSION, *gFoundation, PxCookingParams(PxTolerancesScale()));
/////////////////////////////////////////////
PxInitVehicleSDK(*gPhysics);
PxVehicleSetBasisVectors(PxVec3(0,1,0), PxVec3(0,0,1));
PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE);
//Create the batched scene queries for the suspension raycasts.
gVehicleSceneQueryData = VehicleSceneQueryData::allocate(1, PX_MAX_NB_WHEELS, 1, 1, WheelSceneQueryPreFilterBlocking, NULL, gAllocator);
gBatchQuery = VehicleSceneQueryData::setUpBatchedSceneQuery(0, *gVehicleSceneQueryData, gScene);
//Create the friction table for each combination of tire and surface type.
gFrictionPairs = createFrictionPairs(gMaterial);
//Create a plane to drive on.
PxFilterData groundPlaneSimFilterData(COLLISION_FLAG_GROUND, COLLISION_FLAG_GROUND_AGAINST, 0, 0);
gGroundPlane = createDrivablePlane(groundPlaneSimFilterData, gMaterial, gPhysics);
gScene->addActor(*gGroundPlane);
//Create a vehicle that will drive on the plane.
VehicleDesc vehicleDesc = initVehicleDesc();
gVehicle4W = createVehicle4W(vehicleDesc, gPhysics, gCooking);
PxTransform startTransform(PxVec3(0, (vehicleDesc.chassisDims.y*0.5f + vehicleDesc.wheelRadius + 1.0f), 0), PxQuat(PxIdentity));
gVehicle4W->getRigidDynamicActor()->setGlobalPose(startTransform);
gScene->addActor(*gVehicle4W->getRigidDynamicActor());
//Set the vehicle to rest in first gear.
//Set the vehicle to use auto-gears.
gVehicle4W->setToRestState();
gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST);
gVehicle4W->mDriveDynData.setUseAutoGears(true);
gVehicleModeTimer = 0.0f;
gVehicleOrderProgress = 0;
startBrakeMode();
}
void incrementDrivingMode(const PxF32 timestep)
{
gVehicleModeTimer += timestep;
if(gVehicleModeTimer > gVehicleModeLifetime)
{
//If the mode just completed was eDRIVE_MODE_ACCEL_REVERSE then switch back to forward gears.
if(eDRIVE_MODE_ACCEL_REVERSE == gDriveModeOrder[gVehicleOrderProgress])
{
gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eFIRST);
}
//Increment to next driving mode.
gVehicleModeTimer = 0.0f;
gVehicleOrderProgress++;
releaseAllControls();
//If we are at the end of the list of driving modes then start again.
if(eDRIVE_MODE_NONE == gDriveModeOrder[gVehicleOrderProgress])
{
gVehicleOrderProgress = 0;
gVehicleOrderComplete = true;
}
//Start driving in the selected mode.
DriveMode eDriveMode = gDriveModeOrder[gVehicleOrderProgress];
switch(eDriveMode)
{
case eDRIVE_MODE_ACCEL_FORWARDS:
startAccelerateForwardsMode();
break;
case eDRIVE_MODE_ACCEL_REVERSE:
startAccelerateReverseMode();
break;
case eDRIVE_MODE_HARD_TURN_LEFT:
startTurnHardLeftMode();
break;
case eDRIVE_MODE_HANDBRAKE_TURN_LEFT:
startHandbrakeTurnLeftMode();
break;
case eDRIVE_MODE_HARD_TURN_RIGHT:
startTurnHardRightMode();
break;
case eDRIVE_MODE_HANDBRAKE_TURN_RIGHT:
startHandbrakeTurnRightMode();
break;
case eDRIVE_MODE_BRAKE:
startBrakeMode();
break;
case eDRIVE_MODE_NONE:
break;
};
//If the mode about to start is eDRIVE_MODE_ACCEL_REVERSE then switch to reverse gears.
if(eDRIVE_MODE_ACCEL_REVERSE == gDriveModeOrder[gVehicleOrderProgress])
{
gVehicle4W->mDriveDynData.forceGearChange(PxVehicleGearsData::eREVERSE);
}
}
}
void stepPhysics()
{
const PxF32 timestep = 1.0f/60.0f;
//Cycle through the driving modes to demonstrate how to accelerate/reverse/brake/turn etc.
incrementDrivingMode(timestep);
//Update the control inputs for the vehicle.
if(gMimicKeyInputs)
{
PxVehicleDrive4WSmoothDigitalRawInputsAndSetAnalogInputs(gKeySmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W);
}
else
{
PxVehicleDrive4WSmoothAnalogRawInputsAndSetAnalogInputs(gPadSmoothingData, gSteerVsForwardSpeedTable, gVehicleInputData, timestep, gIsVehicleInAir, *gVehicle4W);
}
//Raycasts.
PxVehicleWheels* vehicles[1] = {gVehicle4W};
PxRaycastQueryResult* raycastResults = gVehicleSceneQueryData->getRaycastQueryResultBuffer(0);
const PxU32 raycastResultsSize = gVehicleSceneQueryData->getQueryResultBufferSize();
PxVehicleSuspensionRaycasts(gBatchQuery, 1, vehicles, raycastResultsSize, raycastResults);
//Vehicle update.
const PxVec3 grav = gScene->getGravity();
PxWheelQueryResult wheelQueryResults[PX_MAX_NB_WHEELS];
PxVehicleWheelQueryResult vehicleQueryResults[1] = {{wheelQueryResults, gVehicle4W->mWheelsSimData.getNbWheels()}};
PxVehicleUpdates(timestep, grav, *gFrictionPairs, 1, vehicles, vehicleQueryResults);
//Work out if the vehicle is in the air.
gIsVehicleInAir = gVehicle4W->getRigidDynamicActor()->isSleeping() ? false : PxVehicleIsInAir(vehicleQueryResults[0]);
//Scene update.
gScene->simulate(timestep);
gScene->fetchResults(true);
}
void cleanupPhysics()
{
gVehicle4W->getRigidDynamicActor()->release();
gVehicle4W->free();
PX_RELEASE(gGroundPlane);
PX_RELEASE(gBatchQuery);
gVehicleSceneQueryData->free(gAllocator);
PX_RELEASE(gFrictionPairs);
PxCloseVehicleSDK();
PX_RELEASE(gMaterial);
PX_RELEASE(gCooking);
PX_RELEASE(gScene);
PX_RELEASE(gDispatcher);
PX_RELEASE(gPhysics);
if(gPvd)
{
PxPvdTransport* transport = gPvd->getTransport();
gPvd->release(); gPvd = NULL;
PX_RELEASE(transport);
}
PX_RELEASE(gFoundation);
printf("SnippetVehicle4W done.\n");
}
void keyPress(unsigned char key, const PxTransform& camera)
{
PX_UNUSED(camera);
PX_UNUSED(key);
}
int snippetMain(int, const char*const*)
{
#ifdef RENDER_SNIPPET
extern void renderLoop();
renderLoop();
#else
initPhysics();
while(!gVehicleOrderComplete)
{
stepPhysics();
}
cleanupPhysics();
#endif
return 0;
}